Displaying 12 results from an estimated 12 matches for "gendermale".
2025 Jan 19
2
Test For Difference of Betas By Group in car
...quot;Male", "Female", "Male", "Female", "Male", "Female"))
model <- lm(income ~ education * gender, data = data)
# Test if the beta for "education" is significantly different between genders
test <- linearHypothesis(model, "genderMale - genderFemale = 0")
print(test)
This, however, produces an error that I can't find a way to resolve.
Can this test actually be done in this manner, or is this a case of AI run amok.
Guidance would be appreciated.
--John Sparks
[[alternative HTML version deleted]]
2007 Feb 24
1
Woolf's test, Odds ratio, stratification
Just a general question concerning the woolf test (package vcd), when we have
stratified data (2x2 tables) and when the p.value of the woolf-test is
below 0.05 then we assume that there is a heterogeneity and a common odds
ratio cannot be computed?
Does this mean that we have to try to add more stratification variables
(stratify more) to make the woolf-test p.value insignificant?
Also in the
2007 Mar 08
1
how to assign fixed factor in lm
...Fresh Female
6 677 Fresh Female
7 592 Rancid Male
8 538 Rancid Male
9 476 Rancid Male
10 508 Rancid Female
11 505 Rancid Female
12 539 Rancid Female
> lm(fixed=Value~Gender,data=Food)
Call:
lm(data = Food, fixed = Value ~ Gender)
Coefficients:
(Intercept) LardRancid GenderMale
651.4 -142.8 35.5
Warning message:
extra arguments fixed are just disregarded. in: lm.fit(x, y, offset = offset, singular.ok = singular.ok, ...)
> lm(fixed=Value~Lard+Gender,data=Food)
Call:
lm(data = Food, fixed = Value ~ Lard + Gender)
Coefficients:
(Intercept) L...
2025 Jan 19
1
Test For Difference of Betas By Group in car
...le", "Male", "Female", "Male", "Female"))
>> model <- lm(income ~ education * gender, data = data)
>> # Test if the beta for "education" is significantly different between genders
>> test <- linearHypothesis(model, "genderMale - genderFemale = 0")
That last line appears unlikely to be parsed correctly. In R a ?=? sign is interpreted as assignment whereas a ?==? (doubled equals) is a logical operator. Since I?ve only got a iPhone at hand I can?t test. In the future you should include full text of errors, preferably...
2025 Jan 19
1
Test For Difference of Betas By Group in car
..., "Female", "Male", "Female", "Male", "Female"))
> model <- lm(income ~ education * gender, data = data)
> # Test if the beta for "education" is significantly different between genders
> test <- linearHypothesis(model, "genderMale - genderFemale = 0")
> print(test)
>
> This, however, produces an error that I can't find a way to resolve.
>
> Can this test actually be done in this manner, or is this a case of AI run amok.
>
> Guidance would be appreciated.
> --John Sparks
>
>
>
&...
2008 May 04
2
Ancova_non-normality of errors
...Estimate Std. Error t value Pr(>|t|)
(Intercept) -7.39879 1.97605 -3.744 0.000219 ***
log(pes) 1.78020 0.40118 4.437 1.31e-05 ***
originsite 0.06572 0.01935 3.397 0.000781 ***
originwild 0.07655 0.03552 2.155 0.032011 *
gendermale -9.32418 2.37476 -3.926 0.000109 ***
log(pes):gendermale 1.90393 0.47933 3.972 9.06e-05 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.1433 on 281 degrees of freedom
Multiple R-Squared: 0....
2003 Dec 04
2
Comparing Negative Binomial Regression in Stata and R. Constants differ?
...0 Prob > chi2 =
0.0000
Here is the R glm.nb output:
Deviance Residuals:
Min 1Q Median 3Q Max
-1.9785 -1.0627 -0.4147 0.2865 2.8193
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 2.716069 0.234174 11.598 < 2e-16 ***
gendermale -0.431185 0.139516 -3.091 0.00200 **
mathnce -0.001601 0.005300 -0.302 0.76259
langnce -0.014348 0.005372 -2.671 0.00756 **
---
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
(Dispersion parameter for Negative Binomial(0.7762) family take...
2008 Nov 11
1
using newdata in survfit with categorical variable
...trying to put gender='Male' in newdata to create a expected survival curve for a pseudo cohort by using survfit based on Cox regression. My codes are shown below:
fit<- coxph(Surv(end, status2)~gender, data=wlwsn1)
Summary(fit)
coef exp(coef) se(coef) z p
genderMale 0.204 1.23 0.0912 2.23 0.025
temp<-data.frame(gender='Male)
wlwsn1curve<-survfit(fit, newdata=temp)
Then I got error message:
Error in `contrasts<-`(`*tmp*`, value = "contr.treatment") :
contrasts can be applied only to factors with 2 or more levels
I do not know...
2011 Dec 19
2
summary vs anova
...9 0.7348
smokesever 0.0498764 0.0326254 1.529 0.1271
smokesnever 0.0394109 0.0349142 1.129 0.2597
diseasestate1 0.0018739 0.0176817 0.106 0.9157
diseasestate2 -0.0009858 0.0178651 -0.055 0.9560
age 0.0002841 0.0006290 0.452 0.6518
gendermale 0.1164889 0.0128748 9.048 <2e-16 ***
---
Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1
Residual standard error: 0.1257 on 397 degrees of freedom
Multiple R-squared: 0.1933, Adjusted R-squared: 0.1791
F-statistic: 13.59 on 7 and 397 DF, p-value: 8.9...
2012 Dec 10
3
Warning message: In eval(expr, envir, enclos) : non-integer #successes in a binomial glm!
...;binomial')
#Reults
Independent Sampling design (with replacement)
svydesign(~0, weights = ~weight, data = mat.test)
Call: svyglm(formula = trust ~ edu + prov + gender, design = test,
family = "binomial")
Coefficients:
(Intercept) edusecondary provON provPQ genderMale
-2.658e+01 -8.454e-04 5.317e+01 -1.408e-02 NA
Degrees of Freedom: 599 Total (i.e. Null); 596 Residual
Null Deviance: 759.6
Residual Deviance: 3.406e-09 AIC: 8
Warning messages:
1: In eval(expr, envir, enclos) :
non-integer #successes in a binomial glm!
2: glm.f...
2008 Feb 23
1
clarification about glm
Hello,
I have a question about glm:
if i have a binary covariate (unit=1,0)
the reference group would be 0? (prediction for unit=1)
example:
dat1<-data.frame(y,unit,x1,x2)
log_u <- glm(y~.,family=binomial,data=dat1)
summary(log_u)
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.54247 0.24658 -2.200 0.0278 *
unit1 -0.13052 0.22861 -0.571 0.5680
aps
2009 Jul 12
0
ERROR message while using <-invMillsRatio()
...ot;))
Deviance Residuals:
Min 1Q Median 3Q Max
-0.7660 -0.3053 -0.2462 -0.1984 3.2166
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.439e+00 2.985e-02 -81.714 < 2e-16 ***
age -6.436e-03 3.743e-04 -17.193 < 2e-16 ***
genderMALE 1.785e-01 9.424e-03 18.945 < 2e-16 ***
gemedu 2.128e-02 4.698e-03 4.528 5.95e-06 ***
gemhinc 1.062e-01 6.185e-03 17.166 < 2e-16 ***
es_gdppc 9.765e-06 1.400e-06 6.977 3.02e-12 ***
imf_pop 4.131e-06 1.707e-05 0.242 0.809
estbbo_m 5.932e+00 1.088e-01...