search for: genderfemale

Displaying 5 results from an estimated 5 matches for "genderfemale".

2012 Dec 30
3
Odds Ratio and Logistic Regression
...Min 1Q Median 3Q Max -2.2094 0.4269 0.4269 0.8033 1.1911 Coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) 0.9656 0.1477 6.538 6.25e-11 *** povertyBelow poverty line -0.9978 0.3246 -3.074 0.00211 ** genderFEMALE 1.3840 0.2549 5.429 5.68e-08 *** --- Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1 (Dispersion parameter for binomial family taken to be 1) Null deviance: 494.81 on 499 degrees of freedom Residual deviance: 457.13 on 497 degrees of freedom AIC: 463.1...
2011 Dec 19
2
summary vs anova
...: 1) How do the p-values for smokes* in summary(model) relate to the Pr(>F) for smokes in anova 2) what do the p-values for each of those smokes* mean exactly? 3) the summary above shows the values for diseasestate1 and diseasestate2 how can I get the p-value for diseasecontrol? (or, e.g. genderfemale) thanks.
2012 Nov 29
1
instrumental variables regression using ivreg (AER) or tsls (sem)
...= cd.d) Residuals: Min 1Q Median 3Q Max -3.1692 -0.8294 0.1502 0.8482 3.9537 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -2.053604 1.675314 -1.226 0.2203 urbanyes -0.013588 0.046403 -0.293 0.7697 genderfemale -0.086700 0.036909 -2.349 0.0189 * ethnicityafam -0.566524 0.051686 -10.961 < 2e-16 *** ethnicityhispanic -0.529088 0.048429 -10.925 < 2e-16 *** unemp 0.145806 0.006969 20.922 < 2e-16 *** ed.pred 0.774340 0.120372 6.433 1.38e-10 *** ---...
2011 Feb 16
1
Saturated model in binomial glm
Hi all, Could somebody be so kind to explain to me what is the saturated model on which deviance and degrees of freedom are calculated when fitting a binomial glm? Everything makes sense if I fit the model using as response a vector of proportions or a two-column matrix. But when the response is a factor and counts are specified via the "weights" argument, I am kind of lost as far as
2012 Dec 10
3
Warning message: In eval(expr, envir, enclos) : non-integer #successes in a binomial glm!
...: svyglm(formula = trust ~ gender + edu + prov, design = des.1, family = "binomial") Survey design: svydesign(~0, weights = ~weight, data = mat1) Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -0.625909 0.156560 -3.998 6.87e-05 *** genderFemale 0.013519 0.140574 0.096 0.923 edupost-secondary -0.011569 0.141528 -0.082 0.935 provPQ -0.006614 0.172105 -0.038 0.969 provatl 0.335166 0.297860 1.125 0.261 provwest -0.053862 0.174826 -0.308 0.758 --- Signif....