search for: gamma0

Displaying 4 results from an estimated 4 matches for "gamma0".

Did you mean: gamma
2008 Jan 04
2
R2WinBUGS sending variables as factors
...82 model { #Centre variables mSeaW <- mean(SeaW[]) s_dSeaW <- sd(SeaW[]) #normalise Variables nSeaWiFS <- mSeaW/s_dSeaW for(i in 1:N) { log(lambda[i]) <- delta0 + alpha1 * Month[i] + alpha2 * Lat[i] + beta1 * (SeaW[i] - nSeaW) logit(p[i]) <- gamma0 mu[i, 1] <- 0 mu[i, 2] <- lambda[i] mu.i[i] <- mu[i, index[i]] index[i] ~ dcat(theta[i, 1:2]) theta[i, 1] <- p[i] theta[i, 2] <- 1 - p[i] # mixture YFTCPUE[i] ~ dpois(mu.i[i]) } # recalculate the original intercept term Intercept <- delta0 - bet...
2009 Nov 05
1
Simulate data for spline/piecewise regression model
...PLINE MODEL") #Data Simulation Routine# subjects = 30 #Sets the sample of subjects for whom the data is to be generated# knot = 8 #Specifies the value of knot/change point# beta0 = 3 #Specifies the value of intercept for x <= knot# beta1 = 8 #Specifies the value of slope for x <= knot# gamma0 = 6 #Specifies the value of intercept for x > knot# gamma1 = 5 #Specifies the value of slope for x > knot# #The following intializes empty (NA) vectors# X = rep(NA,subjects) Y = rep(NA, subjects) DATA = rep(NA, subjects) #The following sample x.values from uniform distribution# X = runif(...
2011 Dec 01
1
Estimation of AR(1) Model with Markov Switching
...i-1] + rnorm(1) } } # convert into time series object y <- ts(y, start = 1, freq = 1) # construct negative conditional likelihood function neg.logl <- function(theta, data) { # construct parameters beta_s0 <- theta[1:2] beta_s1 <- theta[3:4] sigma2 <- exp(theta[5]) gamma0 <- theta[6] gamma1 <- theta[7] # construct probabilities #probit specification p_s0_s0 <- pnorm(gamma_s0) p_s0_s1 <- pnorm(gamma_s1) p_s1_s0 <- 1-pnorm(gamma_s0) p_s1_s1 <- 1-pnorm(gamma_s1) # create data matrix X <- cbind(1,y) # assume erogodicity of the markov chain...
2006 May 19
0
how to estimate adding-regression GARCH Model
...I have a question in using fSeries package--the funciton garchFit and garchOxFit if adding a regression to the mean formula, how to estimate the model in R? using garchFit or garchOxFit? For example, Observations is {x,y}_t,there may be some relation between x and y. the model is y_t=gamma0 + *gamma1*x_t*+psi*e_{t-1}+e_t the gamma1*x_t is regression. e_t=sqrt(h_t)*N(0,1) h_t=alpha0+alpha1*e_t^2+beta*h_{t_1}~~~~~~~GARCH(1,1). I didn't know how to estimate the model using function garchFit or garchOxFit or other functions? because the argument in garchFit/garch...