search for: future_lappli

Displaying 8 results from an estimated 8 matches for "future_lappli".

Did you mean: future_lapply
2020 Apr 29
0
mclapply returns NULLs on MacOS when running GAM
On Tue, Apr 28, 2020 at 9:00 PM Shian Su <su.s at wehi.edu.au> wrote: > > Thanks Simon, > > I will take note of the sensible default for core usage. I?m trying to achieve small scale parallelism, where tasks take 1-5 seconds and make fuller use of consumer hardware. Its not a HPC-worthy computation but even laptops these days come with 4 cores and I don?t see a reason to not make
2020 Apr 29
2
mclapply returns NULLs on MacOS when running GAM
Thanks Simon, I will take note of the sensible default for core usage. I?m trying to achieve small scale parallelism, where tasks take 1-5 seconds and make fuller use of consumer hardware. Its not a HPC-worthy computation but even laptops these days come with 4 cores and I don?t see a reason to not make use of it. The goal for the current piece of code I?m working on is to bootstrap many
2018 Feb 19
2
[parallel] fixes load balancing of parLapplyLB
Hi, I'm trying to understand the rationale for your proposed amount of splitting and more precisely why that one is THE one. If I put labels on your example numbers in one of your previous post: nbrOfElements <- 97 nbrOfWorkers <- 5 With these, there are two extremes in how you can split up the processing in chunks such that all workers are utilized: (A) Each worker, called
2018 Feb 26
2
[parallel] fixes load balancing of parLapplyLB
Dear Christian and Henrik, thank you for spotting the problem and suggestions for a fix. We'll probably add a chunk.size argument to parLapplyLB and parLapply to follow OpenMP terminology, which has already been an inspiration for the present code (parLapply already implements static scheduling via internal function staticClusterApply, yet with a fixed chunk size; parLapplyLB already
2018 Feb 20
0
[parallel] fixes load balancing of parLapplyLB
Dear Henrik, The rationale is just that it is within these extremes and that it is really simple to calculate, without making any assumptions and knowing that it won't be perfect. The extremes A and B you are mentioning are special cases based on assumptions. Case A is based on the assumption that the function has a long runtime or varying runtime, then you are likely to get the best load
2018 Mar 01
0
[parallel] fixes load balancing of parLapplyLB
Dear Tomas, Thanks for your commitment to fix this issue and also to add the chunk size as an argument. If you want our input, let us know ;) Best Regards On 02/26/2018 04:01 PM, Tomas Kalibera wrote: > Dear Christian and Henrik, > > thank you for spotting the problem and suggestions for a fix. We'll probably add a chunk.size argument to parLapplyLB and parLapply to follow OpenMP
2018 Feb 12
2
[parallel] fixes load balancing of parLapplyLB
Dear R-Devel List, **TL;DR:** The function **parLapplyLB** of the parallel package has [reportedly][1] (see also attached RRD output) not been doing its job, i.e. not actually balancing the load. My colleague Dirk Sarpe and I found the cause of the problem and we also have a patch to fix it (attached). A similar fix has also been provided [here][2]. [1]:
2018 Mar 04
3
Random Seed Location
On Mon, Feb 26, 2018 at 3:25 PM, Gary Black <gwblack001 at sbcglobal.net> wrote: (Sorry to be a bit slow responding.) You have not supplied a complete example, which would be good in this case because what you are suggesting could be a serious bug in R or a package. Serious journals require reproducibility these days. For example, JSS is very clear on this point. To your question >