search for: fprime

Displaying 6 results from an estimated 6 matches for "fprime".

Did you mean: prime
2010 Feb 15
1
error message error
Hi r-users,   I hope somebody can help me to understand the error message.  Here is my code; ## Newton iteration newton_gam <- function(z) { n   <- length(z)   r   <- runif(n)   tol <- 1E-6   cdf <- vector(length=n, mode="numeric")   fprime <- vector(length=n, mode="numeric")   f   <- vector(length=n, mode="numeric")     for (i in 1:1000)   { cdf  <- integrate(fprime, lower = 0, upper = z)$value     f    <- cdf - r     # Newton method     z    <- z - f/fprime         if (any(f < tol)) break    }...
2010 Jan 26
1
newton method for single nonlinear equation
...]*(1-rho)/(2*sqrt(rho)))^(alp-0.5)         bes1 <- besselI(pars[1]*sqrt(rho)/(1-rho),alp-0.5)        bes2 <- besselI(pars[1]*sqrt(rho)/(1-rho),alp-1.5)       bes3 <- besselI(pars[1]*sqrt(rho)/(1-rho),alp+0.5)      ## Equation       f   <- c*t1*t2*bes1 - runi       ## derivative       fprime   <- c*t1*t2*( -bes1/(1-rho) + (alp-0.5)*bes1/pars[1] + sqrt(rho)*(bes2-bes3)/(2*(1-rho)))       z[i+1] <- z[i] - f/fprime       }       z }   pars <- 0.5          newton.inputsingle(pars,5)   The output :   > pars <- 0.5          > newton.inputsingle(pars,5) [1]  0.5000000 -0....
2010 Jan 26
1
Newton method
...]*(1-rho)/(2*sqrt(rho)))^(alp-0.5)         bes1 <- besselI(pars[1]*sqrt(rho)/(1-rho),alp-0.5)        bes2 <- besselI(pars[1]*sqrt(rho)/(1-rho),alp-1.5)       bes3 <- besselI(pars[1]*sqrt(rho)/(1-rho),alp+0.5)      ## Equation       f   <- c*t1*t2*bes1 - runi       ## derivative       fprime   <- c*t1*t2*( -bes1/(1-rho) + (alp-0.5)*bes1/pars[1] + sqrt(rho)*(bes2-bes3)/(2*(1-rho)))       z[i+1] <- z[i] - f/fprime       }       z }   pars <- 0.5          newton.inputsingle(pars,5)   The output :   > pars <- 0.5          > newton.inputsingle(pars,5) [1]  0.5000000 -0....
2010 Feb 10
1
looping problem
Hi R-users,   I have this code here: library(numDeriv)   fprime <- function(z) { alp  <- 2.0165;   rho  <- 0.868;   # simplified expressions   a      <- alp-0.5   c1     <- sqrt(pi)/(gamma(alp)*(1-rho)^alp)   c2     <- sqrt(rho)/(1-rho)   t1     <- exp(-z/(1-rho))   t2     <- (z/(2*c2))^a   bes1   <- besselI(z*c2,a)   t1bes1 <- t1*...
2010 Feb 09
0
For and while in looping
I would like to solve a nonlinear eqn using newton method and here is the code:   library(numDeriv)   fprime <- function(z) { alp  <- 2.0165;   rho  <- 0.868;   # simplified expressions   a      <- alp-0.5   c1     <- sqrt(pi)/(gamma(alp)*(1-rho)^alp)   c2     <- sqrt(rho)/(1-rho)   t1     <- exp(-z/(1-rho))   t2     <- (z/(2*c2))^a    bes1   <- besselI(z*c2,a)   t1bes1 <-...
2016 Jun 02
4
Floating Point SCEV Analysis
For reference, the case with a variable loop count is filed as PR27894: https://llvm.org/bugs/show_bug.cgi?id=27894 And the case with a constant loop count is filed as PR27899: https://llvm.org/bugs/show_bug.cgi?id=27899 On Thu, Jun 2, 2016 at 7:48 AM, Demikhovsky, Elena via llvm-dev < llvm-dev at lists.llvm.org> wrote: > I implemented IV simplification with FP SCEV and uploaded a new