search for: forgi

Displaying 5 results from an estimated 5 matches for "forgi".

Did you mean: forge
2012 Jan 14
1
Error: unexpected '<' in "<" when modifying existing functions
Hi. I am trying to modify kmeans function. It seems that is failing something obvious with the workspace. I am a newbie and here is my code: myk = function (x, centers, iter.max = 10, nstart = 1, algorithm = c("Hartigan-Wong", + "Lloyd", "Forgy", "MacQueen")) + { + do_one <- function(nmeth) { + Z <- switch(nmeth, { + Z
2013 Feb 03
1
Empty cluster / segfault using vanilla kmeans with version 2.15.2
Dear experts, I am encountering a version-dependent issue. My laptop runs Ubuntu 12.04 LTS 64-bit, R 2.14.1; the issue explained below never occurred with this version of R My desktop runs Ubuntu 11.10 64-bit, R 2.13.2; what follows applies to this setup. The data I'm clustering is constituted by the rows of a 320 x 6 matrix containing integers ranging from 1 to 7, no missing data. I applied
2013 Mar 13
1
Empty cluster / segfault using vanilla kmeans with version 2.15.2
Hello, here is a working reproducible example which crashes R using kmeans or gives empty clusters using the nstart option with R 15.2. library(cluster) kmeans(ruspini,4) kmeans(ruspini,4,nstart=2) kmeans(ruspini,4,nstart=4) kmeans(ruspini,4,nstart=10) ?kmeans either we got empty always clusters and or, after some further commands an segfault. regards, Detlef Groth ------------ [R] Empty
2010 Dec 02
1
kmeans() compared to PROC FASTCLUS
Hello all, I've been comparing results from kmeans() in R to PROC FASTCLUS in SAS and I'm getting drastically different results with a real life data set. Even with a simulated data set starting with the same seeds with very well seperated clusters the resulting cluster means are still different. I was hoping to look at the source code of kmeans(), but it's in C and FORTRAN and
2006 Aug 07
5
kmeans and incom,plete distance matrix concern
Hi there I have been using R to perform kmeans on a dataset. The data is fed in using read.table and then a matrix (x) is created i.e: [ mat <- matrix(0, nlevels(DF$V1), nlevels(DF$V2), dimnames = list(levels(DF$V1), levels(DF$V2))) mat[cbind(DF$V1, DF$V2)] <- DF$V3 This matrix is then taken and a distance matrix (y) created using dist() before performing the kmeans clustering. My query