Displaying 10 results from an estimated 10 matches for "fit5".
Did you mean:
fit
2011 Sep 12
1
coxreg vs coxph: time-dependent treatment
...t with coxph having robust and cluster option
fit3 <- coxph(Surv(start,stop,event)~transplant + cluster(id),
data=heart, weights = iptw)
fit3 # fit with coxph having cluster option
fit4 <- coxph(Surv(start,stop,event)~transplant,
data=heart, weights = iptw)
fit4 # fit with coxph
# coxreg
fit5 <- coxreg(Surv(start,stop,event)~transplant + cluster(id),
data=heart, weights = iptw)
fit5 # fit with coxreg from eha having cluster option
fit6 <- coxreg(Surv(start,stop,event)~transplant,
data=heart, weights = iptw)
fit6 # fit with coxreg from eha
############################
> exp...
2006 Jan 09
2
decide between polynomial vs ordered factor model (lme)
...n=6) within subject (n=4) within smallgroups
(=gru) (n = 28), i.e. n = 4 * 28 = 112 persons and 112 * 6 = 672 data points
library(nlme)
fitlme7 <- lme(nachw ~ I(zeitn-3.5) + I((zeitn-3.5)^2) +
I((zeitn-3.5)^3) + I((zeitn-3.5)^4)*gru, random = list(subgr = ~ 1,
subject = ~ zeitn), data = hlm3)
fit5 <- lme(nachw ~ ordered(I(zeitn-3.5))*gru, random = list(subgr =
~ 1, subject = ~ zeitn), data = hlm3)
anova( update(fit5, method="ML"), update(fitlme7, method="ML") )
> anova( update(fit5, method="ML"), update(fitlme7, method="ML") )...
2009 Nov 19
1
Splitting massive output into multiple text files
...a.frame(model)
modeldf[2:13<-lapply(modeldf[2:13],factor)
colms<-(modeldf)[4:13] ## 10 markers only in this file
se<-c(1:1000)
for(f in colms)
{
print("Marker")
{
for( i in 1:1000)
{
print("perm no.")
print(se[i])
{
peg.no.prm<-sample(peg.no, length(peg.no))
try(fit5<-lmer(data=modeldf, peg.no.prm~1 + (1|family/f)))
print(summary(fit5))
capture.output(fit5, file="testperm5.txt", append=T)
}}}
}
The data files are at:
>>
>>
>> <http://www.4shared.com/file/131980362/460bdafe/Testvcomp10.ht
>> ml> (excel)
>> http:...
2011 Dec 05
1
about error while using anova function
...+inp6+inp7+inp8+inp9,tau=0.15,data=wbc)
fit2<-rq(formula=op~inp1+inp2+inp3+inp4+inp5+inp6+inp7+inp8+inp9,tau=0.5,data=wbc)
fit3<-rq(formula=op~inp1+inp2+inp3+inp4+inp5+inp6+inp7+inp8+inp9,tau=0.15,data=wbc)
fit4<-rq(formula=op~inp1+inp2+inp3+inp4+inp5+inp6+inp7+inp8+inp9,tau=0.15,data=wbc)
fit5<-rq(formula=op~inp1+inp2+inp3+inp4+inp5+inp6+inp7+inp8+inp9,tau=0.15,data=wbc)
*output of tau=0.15*fit1
Call:
rq(formula = op ~ inp1 + inp2 + inp3 + inp4 + inp5 + inp6 + inp7 +
inp8 + inp9, tau = 0.15, data = wbc)
Coefficients:
(Intercept) inp1 inp2 inp3 in...
2008 Aug 25
1
Specifying random effects distribution in glmer()
I'm trying to figure out how to carry out a Poisson regression fit to
longitudinal data with a gamma distribution with unknown shape and
scale parameters.
I've tried the 'lmer4' package's glmer() function, which fits the
Poisson regression using:
library('lme4')
fit5<- glmer(seizures ~ time + progabide + timeXprog +
offset(lnPeriod) + (1|id),
data=pdata, nAGQ=1, family=poisson) #note: can't use nAGQ>1, not
yet implemented
summary(fit5)
Here 'seizures' is a count and 'id' is the subject number.
This fit works, but uses the Poisso...
2009 Nov 19
0
Printing labeled summary to text file ?
...apply(modeldf[2:13],factor)
colms<-(modeldf)[4:13] ## ten marker columns
se<-c(1:10000)
peg.no<-(modeldf)[,14]
library(lme4)
for(f in colms)
{
print("Marker")
{
for( i in 1:10000)
{
print("perm no.")
print(se[i])
{
peg.no.prm<-sample(peg.no, length(peg.no))
try(fit5<-lmer(data=modeldf, peg.no.prm~1 + (1|family/f)))
print(summary(fit5))
capture.output(fit5, file="testperm5.txt", append=T)
}}}
}
The data files are at:
<http://www.4shared.com/file/131980362/460bdafe/Testvcomp10.ht
ml> (excel)
http://www.4shared.com/file/131980512/dc7308b/Te...
2013 Oct 03
2
SSweibull() : problems with step factor and singular gradient
SSweibull() : problems with step factor and singular gradient
Hello
I am working with growth data of ~4000 tree seedlings and trying to fit non-linear Weibull growth curves through the data of each plant. Since they differ a lot in their shape, initial parameters cannot be set for all plants. That’s why I use the self-starting function SSweibull().
However, I often got two error messages:
2006 Jun 23
1
How to use mle or similar with integrate?
Hi
I have the following formula (I hope it is clear - if no, I can try to
do better the next time)
h(x, a, b) =
integral(0 to pi/2)
(
(
integral(D/sin(alpha) to Inf)
(
(
f(x, a, b)
)
dx
)
dalpha
)
and I want to do an mle with it.
I know how to use mle() and I also know about integrate(). My problem is
to give the parameter values a and b to the
2005 Mar 14
1
calling objects in a foreloop
...writing
separate lines of code for each?
-Ben Osborne
> fit1<-lm(dBA.spp16$sp2.dBA.ha~dBA.spp16$sp1.dBA.ha)
> fit2<-lm(dBA.spp16$sp3.dBA.ha~dBA.spp16$sp1.dBA.ha)
> fit3<-lm(dBA.spp16$sp3.dBA.ha~dBA.spp16$sp2.dBA.ha)
> fit4<-lm(dBA.spp16$sp5.dBA.ha~dBA.spp16$sp4.dBA.ha)
> fit5<-lm(dBA.spp16$sp6.dBA.ha~dBA.spp16$sp4.dBA.ha)
> fit6<-lm(dBA.spp16$sp5.dBA.ha~dBA.spp16$sp6.dBA.ha)
> fit7<-lm(dBA.spp16$sp1.dBA.ha~dBA.spp16$sp4.dBA.ha)
> fit8<-lm(dBA.spp16$sp1.dBA.ha~dBA.spp16$sp5.dBA.ha)
>
> dBA.spp16.fits<-matrix(NA, nrow=8, ncol=5)
> colnames...
2013 Jan 06
4
random effects model
Hi A.K
Regarding my question on comparing normal/ obese/overweight with blood
pressure change, I did finally as per the first suggestion of stacking the
data and creating a normal category . This only gives me a obese not obese
14, but when I did with the wide format hoping to get a
obese14,normal14,overweight 14 Vs hibp 21, i could not complete any of the
models.
This time I classified obese=1