Displaying 20 results from an estimated 27 matches for "fit4".
Did you mean:
fit
2012 Nov 08
2
Comparing nonlinear, non-nested models
...ym * (1-exp(-log(2)*(x-xo)/xo))
model4 <- function(x, xo, ym, k) ym * (1-exp(-log(2)*(x-xo)/k))
fit1 <- nls(y~model1(x, xo, ym), start=list(xo=0.5, ym=1))
fit2 <- nls(y~model2(x, xo, ym, k), start=list(xo=0.5, ym=1, k=1))
fit3 <- nls(y~model3(x, xo, ym), start=list(xo=0.5, ym=1))
fit4 <- nls(y~model4(x, xo, ym, k), start=list(xo=0.5, ym=1, k=1))
anova(fit1, fit2)
anova(fit3, fit4)
Models 1 and 2 are nested, as are models 3 and 4 (set k=xo), so they can be
compared using anova. I am looking for a way to compare the non-nested models
(ie models 1 and 3, and models 2 and 4), o...
2011 Sep 12
1
coxreg vs coxph: time-dependent treatment
...2 <- coxph(Surv(start,stop,event)~transplant + cluster(id),
data=heart, weights = iptw, robust = T)
fit2 # fit with coxph having robust and cluster option
fit3 <- coxph(Surv(start,stop,event)~transplant + cluster(id),
data=heart, weights = iptw)
fit3 # fit with coxph having cluster option
fit4 <- coxph(Surv(start,stop,event)~transplant,
data=heart, weights = iptw)
fit4 # fit with coxph
# coxreg
fit5 <- coxreg(Surv(start,stop,event)~transplant + cluster(id),
data=heart, weights = iptw)
fit5 # fit with coxreg from eha having cluster option
fit6 <- coxreg(Surv(start,stop,event...
2005 Jun 15
1
anova.lme error
...ject "fit2" not found
results <- myFunction(myDataFrame=df)
#####################################################
## The same thing outside of a function
# Less restricted
fit3 <- gls(y ~ dose,
weights=varIdent(form=~1|dose),
data=df)
# more restricted
fit4 <- gls(y ~ dose,
data=df)
## This works:
anova(fit3, fit4)
## The results:
## > anova(fit3, fit4)
## Model df AIC BIC logLik Test L.Ratio p-value
## fit3 1 5 57.98998 54.92145 -23.99499
## fit4 2 3 55.75284 53.91172 -24.87642 1 vs 2 1.76286 0.4142
2004 May 07
0
rpart for CART with weights/priors
...eversion, i.e. preference for
the other class)
#lead to totally different trees...
#third approach using weights:
#sorting of data to design weight vector
ind<-order(kyphosis[,1])
kyphosis1<-kyphosis[ind,]
summary(kyphosis1[,1])
weight<-c(rep(1,64),rep(2,17))
summary(as.factor(weight))
fit4 <- rpart(Kyphosis ~ Age + Number + Start, data=kyphosis1,
weights=weight)
#leads to result very similar to fit2 with
loss<-matrix(c(0,1,2,0),nrow=2,ncol=2)
#(same tree and cutoff points, but slightly different probabilities, maybe
numerical artefact?)
fit4
plot(fit4)
text(fit4,use.n=T)
#do...
2008 Apr 17
1
survreg() with frailty
...atus) ~ rx + frailty(litter), rats)
fit1
fit1$history[[1]]$theta
# OK
fit2 <- survreg(Surv(time, status) ~ rx + frailty(litter, df = 13),
rats)
fit2
fit2$history[[1]]$theta
# discrepancy
fit3 <- survreg(Surv(time, status)~ age + sex + frailty(id), kidney)
fit3
fit3$history[[1]]$theta
# OK
fit4 <- survreg(Surv(time, status)~ age + frailty(id), kidney)
fit4
fit4$history[[1]]$theta
Am I missing something? Thanks in advance for any pointers!
Best,
Dimitris
----
Dimitris Rizopoulos
Biostatistical Centre
School of Public Health
Catholic University of Leuven
Address: Kapucijnenvoer 35,...
2010 Feb 26
2
Error in mvpart example
..., collapse = ",", sep = "") :
dim(X) must have a positive length
This seems to be a problem with the cross-validation, since the "xerror" and "xstd" columns are missing from the summary table as well.
Using the mpart() wrapper results in the same error:
fit4<-mvpart(gdist(spider[,1:12],meth="bray",full=TRUE,sq=TRUE)~water+twigs+reft+herbs+moss+sand,spider,method="dist")
summary(fit4)
Note, changing the 'method' argument to ="mrt" seems, superficially, to solve the problem. However, when the dependent variable i...
2006 Aug 24
2
my error with augPred
Dear all
I try to refine my nlme models and with partial success. The model is
refined and fitted (using Pinheiro/Bates book as a tutorial) but when
I try to plot
plot(augPred(fit4))
I obtain
Error in predict.nlme(object, value[1:(nrow(value)/nL), , drop =
FALSE], :
Levels (0,3.5],(3.5,5],(5,7],(7,Inf] not allowed for
vykon.fac
>
Is it due to the fact that I have unbalanced design with not all
levels of vykon.fac present in all levels of other explanatory fa...
2011 Jan 21
2
Looping with incremented object name and increment function
Folks,
I am trying to get a loop to run which increments the object name as part of
the loop. Here "fit1" "fit2" "fit3" and "fit4" are linear regression models
that I have created.
> for (ii in c(1:4)){
+ SSE[ii]=rbind(anova(fit[ii])$"Sum Sq")
+ dfe[ii]=rbind(summary(fit[ii])$df)
+ }
Error in anova(fit[ii]) : object 'fit' not found
Why isn't it looking for object 'fit1' instead of '...
2004 Dec 20
2
problems with limma
...er in Anova
> #
> all <- cbind(nzw,akr)
> ts <- c(1,1,1,2,2,2,3,3,3,4,4,4)
> ts <- as.factor(ts)
> levels(ts) <- c("nzwC","nzwT","akrC","akrT")
> design <- model.matrix(~0+ts)
> colnames(design) <- levels(ts)
> fit4 <- lmFit(all,design)
> cont.matrix <- makeContrasts(
+ Baseline = akrC - nzwC,
+ NZW_Smk = nzwT - nzwC,
+ AKR_Smk = akrT - akrC,
+ Diff = (akrT - akrC) - (nzwT - nzwC),
+ levels=design)
> fit42 <- contrasts.fit(fit4,cont.matrix)
> fit42 <- eBayes(f...
2005 Sep 09
1
nls fails to return correlation matrix (PR#8127)
...3 8 6.0219 0.67844 0.00139
4 10 6.1628 0.65797 0.00130
5 12 6.2885 0.64604 0.00119
6 16 6.4956 0.63047 0.00112
> df <- data.frame(x=data$V2-6, y=data$V3)
> df
x y
1 -0.3209 0.80709
2 -0.1364 0.71202
3 0.0219 0.67844
4 0.1628 0.65797
5 0.2885 0.64604
6 0.4956 0.63047
> fit4 <- nls(y ~ a+b*x+c*x^2+d*x^3+e*x^4, data = df, start = list(a = 1., b =
-1., c = 1., d=-1., e=1.))
> summary(fit4)
Formula: y ~ a + b * x + c * x^2 + d * x^3 + e * x^4
Parameters:
Estimate Std. Error t value Pr(>|t|)
a 0.680936 0.001327 513.002 0.00124 **
b -0.168167 0.010660 -15...
2011 Dec 05
1
about error while using anova function
fit1<-rq(formula=op~inp1+inp2+inp3+inp4+inp5+inp6+inp7+inp8+inp9,tau=0.15,data=wbc)
fit2<-rq(formula=op~inp1+inp2+inp3+inp4+inp5+inp6+inp7+inp8+inp9,tau=0.5,data=wbc)
fit3<-rq(formula=op~inp1+inp2+inp3+inp4+inp5+inp6+inp7+inp8+inp9,tau=0.15,data=wbc)
fit4<-rq(formula=op~inp1+inp2+inp3+inp4+inp5+inp6+inp7+inp8+inp9,tau=0.15,data=wbc)
fit5<-rq(formula=op~inp1+inp2+inp3+inp4+inp5+inp6+inp7+inp8+inp9,tau=0.15,data=wbc)
*output of tau=0.15*fit1
Call:
rq(formula = op ~ inp1 + inp2 + inp3 + inp4 + inp5 + inp6 + inp7 +
inp8 + inp9, tau = 0.15, da...
2005 Feb 14
1
testing equality of variances across groups in lme?
Hello. I am fitting a two-level mixed model which assumes equality of
variance in the lowest-level residuals across groups. The call is:
fit3<-lme(CLnNAR~CLnRGR,data=meta.analysis,
+ na.action="na.omit",random=~1+CLnRGR|study.code)
I want to test the assumption of equality of variances across groups at
the lowest level. Can someone tell me how to do this? I know that one
2012 Feb 07
0
gmodels error: "no method for coercing this S4 class to a vector"
...I'm having a problem using functions in the gmodels library on an object of class mer from the lmer package. Code for a reproducible example is below.
# Load lme4 library and sample data
library(lme4)
library(faraway)
library(gmodels)
data(penicillin)
# Fit a linear mixed effects model
fit4 <- lmer(yield ~ treat + (1|blend), penicillin)
# Extract confidence intervals for fixed effects using gmodels library
ci(fit4)
The call to 'ci' results in the following error:
Error in as.vector(data) :
no method for coercing this S4 class to a vector
This error does not occur w...
2018 Feb 14
0
Unexpected behaviour in rms::lrtest
...esterol, data = exdata)
> fit2 <- lrm(y ~ blood.pressure + age + sex * cholesterol, data = exdata)
> lrtest(fit1, fit2) # error as expected
Error in lrtest(fit1, fit2) : models are not nested
> fit3 <- lrm(y ~ blood.pressure + sex * age + rcs(cholesterol, 4),
data = exdata)
> fit4 <- lrm(y ~ blood.pressure + age + sex * rcs(cholesterol, 4),
data = exdata)
> lrtest(fit3,fit4) # gives result for apparently non-nested models
Model 1: y ~ blood.pressure + sex * age + rcs(cholesterol, 4)
Model 2: y ~ blood.pressure + age + sex * rcs(cholesterol, 4)
L.R. Chisq...
2010 Sep 10
2
gee p values
windows Vista
R 2.10.1
Is it possible to get p values from gee? Summary(geemodel) does not appear to produce p values.:
> fit4<- gee(y~time, id=Subject, data=data.frame(data))
Beginning Cgee S-function, @(#) geeformula.q 4.13 98/01/27
running glm to get initial regression estimate
(Intercept) time
1.1215614 0.8504413
> summary(fit4)
GEE: GENERALIZED LINEAR MODELS FOR DEPENDENT DATA
gee S-function, ve...
2004 Dec 21
0
Fwd: problems with limma
...all <- cbind(nzw,akr)
>> ts <- c(1,1,1,2,2,2,3,3,3,4,4,4)
>> ts <- as.factor(ts)
>> levels(ts) <- c("nzwC","nzwT","akrC","akrT")
>> design <- model.matrix(~0+ts)
>> colnames(design) <- levels(ts)
>> fit4 <- lmFit(all,design)
>> cont.matrix <- makeContrasts(
> + Baseline = akrC - nzwC,
> + NZW_Smk = nzwT - nzwC,
> + AKR_Smk = akrT - akrC,
> + Diff = (akrT - akrC) - (nzwT - nzwC),
> + levels=design)
>> fit42 <- contrasts.fit(fit4,cont.ma...
2012 Apr 29
0
need help with avg.surv (Direct Adjusted Survival Curve)
...uot;))
matlines(fits$time,fits$fits)
fit2<-coxph(Surv(time, death) ~ stage + age.larynx + factor(year>=74), data=larynx, method=c("efron"))
summary(fit2)
fit3<-coxph(Surv(time, death) ~ stage.fac + age.larynx + year.larynx), data=larynx, method=c("efron"))
summary(fit3)
fit4<-coxph(Surv(time,death)~factor(stage)+factor(age>=74)+factor(year>=74),data=larynx,method=c("efron"))
summary(fit4)
lines(survexp(~stage+ratetable(stage,age.larynx,year>=74),data=larynx,ratetable=fit2,cohort=TRUE),col="purple")
fits<-avg.surv(fit3, var.name=&quo...
2012 Apr 30
0
need help with avg.surv (Direct Adjusted Survival Curve), Message-ID:
...t;))
matlines(fits$time,fits$fits)
fit2<-coxph(Surv(time, death) ~ stage + age.larynx + factor(year>=74),
data=larynx, method=c("efron"))
summary(fit2)
fit3<-coxph(Surv(time, death) ~ stage.fac + age.larynx + year.larynx),
data=larynx, method=c("efron"))
summary(fit3)
fit4<-coxph(Surv(time,death)~factor(stage)+factor(age>=74)+factor(year>=74),data=larynx,method=c("efron"))
summary(fit4)
lines(survexp(~stage+ratetable(stage,age.larynx,year>=74),data=larynx,ratetable=fit2,cohort=TRUE),col="purple")
fits<-avg.surv(fit3, var.name=&q...
2013 Jul 09
3
fitting log function: errors using nls and nlxb
Hi-
I am trying to fit a log function to my data, with the ultimate goal of
finding the second derivative of the function. However, I am stalled on
the first step of fitting a curve.
When I use the following code:
FG2.model<-(nls((CO2~log(a*Time)+b), start=setNames(coef(lm(CO2 ~
log(Time), data=FG2)), c("a", "b")),data=FG2))
I get the following error:
Error in
2006 Jun 23
1
How to use mle or similar with integrate?
Hi
I have the following formula (I hope it is clear - if no, I can try to
do better the next time)
h(x, a, b) =
integral(0 to pi/2)
(
(
integral(D/sin(alpha) to Inf)
(
(
f(x, a, b)
)
dx
)
dalpha
)
and I want to do an mle with it.
I know how to use mle() and I also know about integrate(). My problem is
to give the parameter values a and b to the