Displaying 20 results from an estimated 56 matches for "fit0".
Did you mean:
fit
2009 Apr 15
2
AICs from lmer different with summary and anova
...rray(runif(720),c(240,3),dimnames=list(NULL,c('x1','x2','y'
))))
id=rep(1:120,2); datx=cbind(id,datx)
#give x1 a slight relation with y (only necessary to make the random effects
non-zero in this artificial example)
datx$x1=(datx$y*0.1)+datx$x1
library(lme4)
#fit the data
fit0=lmer(y~x1+x2+(1|id), data=datx); print(summary(fit0),corr=F)
fit1=lmer(y~x1+x2+(1+x1|id), data=datx); print(summary(fit1),corr=F)
#compare the models
anova(fit0,fit1)
Now, look at the output, below. You can see that the AIC from
"print(summary(fit0))" is 87.34, but the AIC for fit0 in...
2011 Oct 06
1
anova.rq {quantreg) - Why do different level of nesting changes the P values?!
...on the three models. I expect that the p.value
for the comparison of model 1 and model 2 would remain the same, whether or
not I add a third model to be compared with.
However, the P values change, and I do not understand why.
Here is an example code (following with it's input):
data(barro)
fit0 <- rq(y.net ~ lgdp2 + fse2 , data = barro)
fit1 <- rq(y.net ~ lgdp2 + fse2 + gedy2 , data = barro)
fit2 <- rq(y.net ~ lgdp2 + fse2 + gedy2 + Iy2 , data = barro)
anova(fit0,fit1,fit2, R = 1000)
anova(fit0,fit1, R = 1000)
Output:
> data(barro)
> fit0 <- rq(y.net ~ lgdp2 + fse...
2019 Apr 24
1
Bug in "stats4" package - "confint" method
...l exist).
Sample code:
> ## Avoid printing to unwarranted accuracy
> od <- options(digits = 5)
> x <- 0:10
> y <- c(26, 17, 13, 12, 20, 5, 9, 8, 5, 4, 8)
>
> ## Easy one-dimensional MLE:
> nLL <- function(lambda, y) -sum(stats::dpois(y, lambda, log = TRUE))
> fit0 <- mle(nLL, start = list(lambda = 5), fixed=list(y=y), nobs = NROW(y))
> confint(fit0)
Profiling...
2.5 % 97.5 %
9.6524 13.6716
> rm(y)
> confint(fit0)
Profiling...
Error in eval(expr, p) : object 'y' not found
In this sample code, I?m showing that after the removal of y...
2018 Jan 17
1
Assessing calibration of Cox model with time-dependent coefficients
I am trying to find methods for testing and visualizing calibration to Cox
models with time-depended coefficients. I have read this nice article
<http://journals.sagepub.com/doi/10.1177/0962280213497434>. In this paper,
we can fit three models:
fit0 <- coxph(Surv(futime, status) ~ x1 + x2 + x3, data = data0) p <-
log(predict(fit0, newdata = data1, type = "expected")) lp <- predict(fit0,
newdata = data1, type = "lp") logbase <- p - lp fit1 <- glm(y ~ offset(p),
family = poisson, data = data1) fit2 <- glm(y...
2012 Nov 15
1
Step-wise method for large dimension
Hi ,
I want to apply the following code fo my data with 400 predictors.
I was wondering if there ia an alternative way instead of typing 400 predictors for the following code.
I really appreciate your help.
fit0<-lm(Y~1, data= mydata)
fit.final<- lm(Y~X1+X2+X3+.....+X400, data=mydata) ???
step(fit0, scope=list(lower=fit0, upper=fit.final), data=mydata, direction="forward")
step(fit.final, scope=list(lower=fit.final, upper=fit0), data=mydata, direction="backward")
Best,Farnoosh S...
2009 May 10
2
plot(survfit(fitCox)) graph shows one line - should show two
...is EMail message.
John
> #Create simple survival object
> GVHDdata<-list(Time=GVHD$Time,Time30=(GVHD$Time)/30,
+ Age=GVHD$Age,Drug=GVHD$Drug,Died=GVHD$Died,
+ AgeGrp=cut(GVHD$Age,breaks=c(0,15,25,45)))
>
> summary(GVHD$Drug)
MTX MXT+CSP
32 32
>
>
>
> fit0<-coxph(Surv(Time30,Died)~Drug,data=GVHDdata)
> summary(fit0)
Call:
coxph(formula = Surv(Time30, Died) ~ Drug, data = GVHDdata)
n= 64
coef exp(coef) se(coef) z p
Drug[T.MXT+CSP] -1.15 0.316 0.518 -2.23 0.026
exp(coef) exp(-coef) lower .95 up...
2018 Jan 18
1
Time-dependent coefficients in a Cox model with categorical variants
...please obey the mailing list rules and turn of
First, as others have said please obey the mailing list rules and turn off html, not everyone uses an html email client.
Here is your code, formatted and with line numbers added. I also fixed one error: "y" should be "status".
1. fit0 <- coxph(Surv(futime, status) ~ x1 + x2 + x3, data = data0)
2. p <- log(predict(fit0, newdata = data1, type = "expected"))
3. lp <- predict(fit0, newdata = data1, type = "lp")
4. logbase <- p - lp
5. fit1 <- glm(status ~ offset(p), family = poisson, data = data1)...
2009 May 11
1
Warning trying to plot -log(log(survival))
...on. The plot, which should give two lines (one for each treatment) gives only one line and a warning message. I would appreciate help getting two lines, and an explanation of the warning message. My problem may the that I have very few events in one of my strata, but I don't know.
Thanks,
John
fit0<-coxph(Surv(Time30,Died)~strata(Rx)+Age,data=GVHDdata)
plot(survfit(fit0),fun="cloglog")
WARNING: Warning in xy.coords (x, y, xlabel, ylabel, log) :
2 x values <=0 omitted from logarithmic plot
> print(survfit(fit0),fun="cloglog")
Call: survfit.coxph(object = fit...
2011 May 08
1
anova.lm fails with test="Cp"
Here is an example, modified from the help page to use test="Cp":
--------------------------------------------------------------------------------
> fit0 <- lm(sr ~ 1, data = LifeCycleSavings)
> fit1 <- update(fit0, . ~ . + pop15)
> fit2 <- update(fit1, . ~ . + pop75)
> anova(fit0, fit1, fit2, test="Cp")
Error in `[.data.frame`(table, , "Resid. Dev") :
undefined columns selected
> sessionInfo()
R version 2....
2023 Oct 24
1
by function does not separate output from function with mulliple parts
...ta.frame")
mydata[,"StepType"] <- rep(c("First","Second"),25)
mydata
########################
# END Create Dataframe #
########################
############################
# Define function to be run#
############################
DoReg <- function(x){
fit0<-lm(as.numeric(HipFlex) ~ jSex,data=x)
print(summary(fit0))
cat("\nMale\n")
print(contrast(fit0,
list(jSex="Male")))
cat("\nFemale\n")
print(contrast(fit0,
list(jSex="Female")))
cat("\nDifferenc...
2011 Sep 12
1
coxreg vs coxph: time-dependent treatment
...- heart$start
fit <- glm(transplant ~ age + surgery + year + follow,
data=heart, family = binomial)
heart$iptw <- ifelse(heart$transplant == 0,
1 - predict(fit, type = "response"),
predict(fit, type = "response"))
summary(heart$iptw)
# no weights (basic calculation)
fit0 <- coxph(Surv(start,stop,event)~transplant, data=heart)
fit0 # fit with coxph without case-weights
fit1 <- coxreg(Surv(start,stop,event)~transplant, data=heart)
fit1 # fit with coxreg from eha without case-weights
# coxph
fit2 <- coxph(Surv(start,stop,event)~transplant + cluster(id),
da...
2019 Dec 27
2
"simulate" does not include variability in parameter estimation
...would I call them?? I can't use the word "response", because that's
already used with a different meaning. Might "observations" be the
appropriate term?
????? What do you think?
????? Thanks,
????? Spencer Graves
> x0 <- c(-1, 1)
> var(x0)
[1] 2
> fit0 <- lm(x0~1)
> vcov(fit0)
??????????? (Intercept)
(Intercept)?????????? 1
> sim0 <- simulate(fit0, 10000, 1)
> var(unlist(sim0))
[1] 2.006408
> x1 <- 1
> fit1 <- glm(x1~1, poisson)
> coef(fit1)
?(Intercept)
4.676016e-11
> exp(coef(fit1))
(Intercept)
???????...
2009 Oct 22
1
Automatization of non-linear regression
...2468 12.506960 4.572391
>
>
> ## Using the initial parameters above,
> ## fit the data with a logistic curve.
> para0.st <- c(
+ alpha=2.212,
+ beta=12.507/4.572, # beta in our model is xmid/scale
+ gamma=1/4.572 # gamma (or r) is 1/scale
+ )
>
> fit0 <- nls(
+ severity~alpha/(1+exp(beta-gamma*time)),
+ data1,
+ start=para0.st,
+ trace=T
+ )
0.1621433 : 2.2120000 2.7355643 0.2187227
0.1621427 : 2.2124095 2.7352979 0.2187056
>
> ## Plot to see how the model fits the data; plot the
> ## logistic cur...
2006 Feb 27
1
help with step()
Folks:
I'm having trouble doing a forward variable selection using step()
First, I fit an initial model:
fit0 <- glm ( est~1 , data=all, subset=c(n>=25) )
then I invoke step():
fit1 <- step( fit0 , scope=list(upper=est~ pcped + pchosp + pfarm
,lower=est~1))
I get the error message: Error in eval(expr, envir, enclos) : invalid
'envir' argument
I looked at the documention on ste...
2012 Jan 26
1
3-parametric Weibull regression
Hello,
I'm quite new to R and want to make a Weibull-regression with the survival package. I know how to build my "Surv"-object and how to make a standard-weibull regression with "survreg".
However, I want to fit a translated or 3-parametric weibull dist to account for a failure-free time.
I think I would need a new object in survreg.distributions, but I don't know how
2006 Oct 08
1
Simulate p-value in lme4
...r <- 10
chisq.sim <- rep(NA, iter)
set.seed(1)
for(i in 1:iter){
s.i <- sample(subj.)
# Randomize subject assignments to 'pred' groups
epil3.$pred <- pred.[s.i][epil3.$subject]
fit1 <- lmer(y ~ pred+(1 | subject),
family = poisson, data = epil3.)
fit0 <- lmer(y ~ 1+(1 | subject),
family = poisson, data = epil3.)
chisq.sim[i] <- anova(fit0, fit1)[2, "Chisq"]
}
************simulation (MM)************
iter <- 10
chisq.sim <- rep(NA, iter)
Zt <- slot(model1,"Zt") # see ?lmer-class
n.grps <-...
2006 Oct 18
1
MARS help?
...l, and I wonder if someone can suggest a better
way to do this. The following example consists of a slight downward
trend followed by a jump up after t1=4, following by a more marked
downward trend after t1=5:
Dat0 <- cbind(t1=1:10,
x=c(1, 0, 0, 90, 99, 95, 90, 87, 80, 77))
library(mda)
fit0 <- mars(Dat0[, 1, drop=FALSE], Dat0[, 2],
penalty=.001)
plot(Dat0, type="l")
lines(Dat0[, 1], fit0$fitted.values,
lty=2, col="red")
Are there 'mars' options I'm missing or other software I should be
using?
I've got thousands...
2019 Dec 27
1
"simulate" does not include variability in parameter estimation
...fferent meaning. Might "observations" be the
>> appropriate term?
>>
>>
>> ? ????? What do you think?
>> ? ????? Thanks,
>> ? ????? Spencer Graves
>>
>>
>> ? > x0 <- c(-1, 1)
>> ? > var(x0)
>> [1] 2
>> ? > fit0 <- lm(x0~1)
>> ? > vcov(fit0)
>> ? ??????????? (Intercept)
>> (Intercept)?????????? 1
>> ? > sim0 <- simulate(fit0, 10000, 1)
>> ? > var(unlist(sim0))
>> [1] 2.006408
>> ? > x1 <- 1
>> ? > fit1 <- glm(x1~1, poisson)
>>...
2004 Apr 27
0
Extracting labels for residuals from lme
Dear R-helpers,
I want to try to extract residuals from a multi-level
linear mixed effects model, to correlate with another
variable. I need to know which residuals relate to
which experimental units in the lme. I can show the
labels that relate to the experimental units via the
command
ranef(fit0)$resid
which gives:
604/1/0 -1.276971e-05
604/1/1 -1.078644e-03
606/1/0 -7.391706e-03
606/1/1 8.371521e-03
610/1/0 -6.361077e-03
610/1/1 -1.090040e-03
646/1/0 -1.696881e-03
646/1/1 -6.396153e-03
But, I cannot figure out how to access the labels for
each row in this table. names(unlist(ranef(fit0...
2004 Dec 04
1
AIC, AICc, and K
How can I extract K (number of parameters) from an AIC calculation, both to
report K itself and to calculate AICc? I'm aware of the conversion from AIC ->
AICc, where AICc = AIC + 2K(K+1)/(n-K-1), but not sure of how K is calculated
or how to extract that value from either an AIC or logLik calculation.
This is probably more of a basic statistics question than an R question, but I
thank