Displaying 1 result from an estimated 1 matches for "filtered_pheno".
2014 Jul 12
0
lm and 450k data
...odel1 = function(meth_matrix,exposure, X1, X2, X3, batch) {
mod = lm(meth_matrix[, methcol]~exposure+X1+X2+X3+batch)
res = summary(mod)$coef[2,]
system.time(indiv.results <- mclapply(setNames(ncol=473864(cord_betas)), dimnames(cord_betas)[[2]]), Model1, meth_matrix=cord_betas, exposure=filtered_pheno, X1=covariates$k032, X2=covariates$k021, X3=covariates$kz029, batch=pdata.B1221.cord$BCDPlate))
}
I am not sure if this will make any sense or if you need any more information?
Any help or guidance would be massively appreciated.
Best wishes
Jessica Timms
[[alternative HTML version de...