Displaying 3 results from an estimated 3 matches for "exponential_rate".
Latin Hypercube Sampling when parameters are defined according to specific probability distributions
2017 May 27
2
Latin Hypercube Sampling when parameters are defined according to specific probability distributions
...have a package specific
question, you should try to contact the package maintainer first.
set.seed(1)
# I don't think your model has only one parameter, so I will include multiple
input_parameters <- c("dispersal_distance", "temperature", "pressure")
N <- 50
exponential_rate <- 1/30
library(lhs)
X <- randomLHS(N, length(input_parameters))
dimnames(X) <- list(NULL, input_parameters)
# X is now a uniformly distributed Latin hypercube
head(X)
hist(X[,1], breaks=5)
hist(X[,2], breaks=5)
hist(X[,3], breaks=5)
# now, transform the dispersal_distance paramter to an...
Latin Hypercube Sampling when parameters are defined according to specific probability distributions
2017 Jun 01
1
Latin Hypercube Sampling when parameters are defined according to specific probability distributions
...f the data frame ?tabLHS?? Given that one row corresponds to one model simulation, I should have a value generated by the LHS for all distance classes at the first line of the data frame.
library(pse)
q <- list("qexp", "qunif", "qunif")
q.arg <- list(list(rate=exponential_rate), list(min=0, max=1),
list(min=0, max=1))
uncoupledLHS <- LHS(model=model_function, input_parameters, N, q, q.arg)
hist(uncoupledLHS$data$dispersal_distance, breaks=10)
tabLHS <- get.data(uncoupledLHS)
Sorry, it?s the first time that I perform a sensitivity analysis using the LHS.
Thank...
Latin Hypercube Sampling when parameters are defined according to specific probability distributions
2017 Jun 01
0
Latin Hypercube Sampling when parameters are defined according to specific probability distributions
...Given that one row corresponds to one model simulation, I should have a value generated by the LHS for all distance classes at the first line of the data frame.
>
>
>
> library(pse)
> q <- list("qexp", "qunif", "qunif")
> q.arg <- list(list(rate=exponential_rate), list(min=0, max=1),
> list(min=0, max=1))
> uncoupledLHS <- LHS(model=model_function, input_parameters, N, q, q.arg)
> hist(uncoupledLHS$data$dispersal_distance, breaks=10)
>
> tabLHS <- get.data(uncoupledLHS)
>
>
>
> Sorry, it?s the first time that I perform a se...