search for: explanatori

Displaying 20 results from an estimated 977 matches for "explanatori".

Did you mean: explanatory
2008 Nov 25
4
glm or transformation of the response?
Dear all, For an introductory course on glm?s I would like to create an example to show the difference between glm and transformation of the response. For this, I tried to create a dataset where the variance increases with the mean (as is the case in many ecological datasets): poissondata=data.frame( response=rpois(40,1:40), explanatory=1:40) attach(poissondata) However, I have run into
2007 Nov 15
3
Ancova doesn't return test statistics
Dear all, I'm quite sure that this is a stupid question, but I'll ask anyway. I want to perform an ANCOVA with two continuous factors and three categorical factors. Plant population growth rate (GR) = dependent variable Seed reduction due to herbivory (SR) = continuous explanatory variable Herbivore species (HS, 2 levels) = categorical explanatory variable Population (Pop, 24 levels) =
2012 Feb 10
2
apply pairs function to multiple columns in a data frame
I am very new to R and programming and thank you in advance for your patience and help with a complete novice! I am working with a large multivariate data set that has 10 explanatory environmental variables (e.g. temp, depth) and over 60 response variables (each is a separate species). My data frame is set up like the simplified version below: JulianDay Temperature Salinity Depth Copepod
2011 Apr 22
1
post-hoc test (glht?) which takes treatment into account not just explanatory variable overall
Hi R helpers! I have used a glht as a post-hoc test on an lmer with: -2 treatments (A & B) -1 categorical explanatory variable (song type) -1 response variable (latency to respond) I wanted to make comparisons between the categorical variables depending on treatment. At the moment the glht simply returns comparisons of each of the (3) categorical explanatory variables with each other
2011 Jan 06
1
Splitting a Vector
Hi all, I read in a text book, that you can examine a variable that is colinear with others, and giving different ANOVA output and explanatory power when ordered differently in the model forula, by modelling that explanatory variable, against the others colinear with it. Then, using that information to split the vector (explanatory variable) in question, into two new vectors, one should
2009 Nov 26
2
Multivariate problems . . . with 200 resposes variables and 1 explanatory variable
How should I analysis it in R ???? all the resposes variables are ordinal from 0 to 10. and the explanatory variable is a factor ... -- View this message in context: http://old.nabble.com/Multivariate-problems-.-.-.-with-200-resposes-variables-and-1-explanatory-variable-tp26522912p26522912.html Sent from the R help mailing list archive at Nabble.com.
2009 Jun 15
1
Linear Models: Explanatory variables with uncertainties
One of the assumptions, on which the (General) Linear Modelling is based is that the response variable is measured with some uncertainties (or weighted), but the explanatory variables are fixed. Is it possible to extend the model by assigning the weights to the explanatory variables as well? Is there a package for doing such a model fit? Thanks
2009 Nov 25
0
Backfitting with Missing Explanatory Values
Hi, I just wanted to check I'm not re-inventing the wheel here. I'm developing a new algorithm for backfitting (i.e. additive models) and for computing partial residuals, where partial residuals are still computed even where there are missing values. Noting additive models here contain both linear terms and smooth terms. If I am re-inventing the wheel could some one please let me know.
2005 Jul 08
2
Garch in a model with explanatory variables
Dear helpers, does anyone know a function to fit a model with: - y mean that is regressed on a set of explanatory variables - y variace behaving as a garch or as a garch in mean Thank you so much for your help, Carlo
2005 Oct 15
2
regression using a lagged dependent variable as explanatory variable
Hi, I would like to regress y (dependent variable) on x (independent variable) and y(-1). I have create the y(-1) variable in this way: ly<-lag(y, -1) Now if I do the following regression lm (y ~ x + ly) the results I obtain are not correct. Can someone tell me the code to use in R in order to perform a regression using as explanatory variable a lagged dependent variable? My best regards,
2011 Jan 07
1
Random Effects Meta Regression
Hi All, I have run a series of random effects meta regressions on binomial outcomes using the metabin function in R. Now I would like to conduct some random effects meta regressions on the outcomes. Is there a command available which will allow for me to test the impact of a certain variable on the relative treatment effect from my meta regressions? Many Thanks, Steph -- View this message in
2008 Jan 16
1
Non linear regression with 2 explanatory variables
Hello! I want to do a non-linear regression with 2 explanatory variables (something like : length ~ a * time * exp( b* temperature)), having a data set (length, time, temperature). Which function could I use (I tried nls but I think it doesn't work) Thanks a lot! Janice
2009 Dec 23
1
prcomp : plotting only explanatory axis arrows
Dear all, I have a very large dataset (1712351 , 20) and would like to plot only the arrows that represent the contribution of each variables. On the sample below I woild like to plot only the explanatory variables (Murder, Assault..) and not the sites. prcomp(USArrests) # inappropriate prcomp(USArrests, scale = TRUE) prcomp(~ Murder + Assault + Rape, data = USArrests, scale = TRUE)
2004 Jun 07
0
dfs in lme
Dear R-mixed-effects-modelers, I could not answer this questions with the book by Pinheiro & Bates and did not find anything appropriate in the archives, either ... We are preparing a short lecture on degrees of freedom and would like to show lme's as an example as we often need to work with these. I have a problem in understanding how many dfs are needed if random terms are used for
2007 Jun 22
2
(Heuristic?) salient feature selection
Dear all, I am new to R and statistics really in general. I am hoping that someone will be able to point me in the right direction and/or suggest a technique/package/reference that will help me with the following. I have: Some input variables (integers, real) Some output variables (integers, real) and I want to find out which between the two correlate best - i.e. the salient features. I
2007 Jul 25
1
qda(MASS) function error
Dear R user, I'm using qda (quadratic discriminant analysis) function (package MASS) to classify 58 explanatory variables (numeric type with different ranges) using a grouping variable (factor 2 levels "0" "1"). I'm using the qda method for class 'data.frame' (in this way I don't need to specify a formula). Using the function:
2007 Nov 01
1
Zelig and the "blogit" model
...s in Zelig. The Zelig documentation does not state a comprehensive syntax, and there are no examples shown in which this (fitting OR as well as marginals) is illustrated. I can readily imitate the examples given, and obtain a fit to (Y1,Y2) but only with a constant psi over all combinations of the explanatories. On the other hand, if I try to guess at how to fit the OR as well, I either get a non-specific error or I am told that I can only supply two models and I have supplied three. Can anyone help by stating the syntax for fitting the OR as well as the marginals? Or might it be the case that, despit...
2003 Nov 27
1
lagsarlm - using mixed explanatory variables (spdep package)
Hello I'm very new to R (which is excellent), so apologies if this has already been raised. In the spdep package, I'm trying to undertake an autoregressive mixed model using the lagsarlm function. This is working fine, but there does not appear to be a method of including an explanatory variable without it automatically being included as a lagged term. I'm after something along the
2005 Jul 21
4
RandomForest question
Hello, I'm trying to find out the optimal number of splits (mtry parameter) for a randomForest classification. The classification is binary and there are 32 explanatory variables (mostly factors with each up to 4 levels but also some numeric variables) and 575 cases. I've seen that although there are only 32 explanatory variables the best classification performance is reached when
2011 Sep 13
1
mvpart analyses with covariables
Hi all, I am fairly new to R and I am trying to run mvpart and create a MRT using explanatory variables and covariables. I've been following the procedures in Numerical Ecoogy with R. The command (no covariables) which works fine - ABUNDTMRT <- mvpart(abundance ~ .,factors,margin=0.08,cp=0,xv="1se",xval=nrow(abundance),xvmult=100,which=4) where abundance is 4th root