Displaying 8 results from an estimated 8 matches for "expit".
Did you mean:
exit
2011 Mar 19
2
problem running a function
...a and in the console is as follows:
> `desman.y` <- structure(c(3L,4L,3L,2L,1L), .Names = c("1", "2", "3", "4",
> "5"))
>
> RN<-function(y=desman.y,J=5,nsites=39,Nmax=100){
+ ####
+ lik<-function(parms){
+ r<-expit(parms[1])
+ lambda<-exp(parms[2])
+ pvec<-1-(1-r)^(0:Nmax)
+ gN<-dpois(0:Nmax,lambda)
+ gN<-gN/sum(gN)
+ lik<-rep(NA,nsites)
+ for(i in 1:nsites){
+ lik[i]<-sum(dbinom(y[i],J,pvec)*gN)
+ }
+ -1*sum(...
2007 Mar 09
1
help with zicounts
...observations from a ZIP model with no intercept
and a single covariate x_{i} which is N(0,1). The logit part is
logit(p_{i})=x_{i}*beta
with beta=1, and the Poisson part is
log(?_{i})=x_{i}*gamma
with gamma=1.
beta.true<-1.0
gamma.true<-1.0
n<-1000
x<-matrix(rnorm(n),n,1)
pi<-expit(x*beta.true)
mu<-exp(x*gamma.true)
y<-numeric(n) # blank vector
z<-(runif(n)<pi) # logical: T with prob p_i, F otherwise
y[z]<-rpois(sum(z),mu[z]) # draw y_i ~ Poisson(mu_i) where z_i = T
y[!z]<-0 # set y_i = 0 where z_i = F
Thanks for your time!
Jacob
Jacob L van Wyk
Departme...
2004 Feb 04
1
password expiration warning messages
Hi,
I'm using openssh on Solaris. I noticed that the password expitation
warning messages are no longer displayed in the login banner. Any idea how
to correct this?
Thanks,
Vanessa Vaz
OSS Nokalva, Inc.
www.oss.com
Tel: 732-302-9669 ext. 112
Fax: 732-302-0023
2013 Jun 24
0
Running MCMC using R2WinBUGS
...:2], T[1:2 ,1:2])
# T is the precision matrix or inverse sigma for MVN
for (i in 1:2)
{
logit(p[j,i])<-p1[j,i]
Y[j,i] ~ dbin(p[j,i],n)
}
}
# Hyper-priors:
gamma[1:2] ~ dmnorm(mn[1:2],prec[1:2 ,1:2])
mn<-c(-1.59,-2.44)
prec<-structure(.Data = c(.001,0,0,.001),.Dim = c(2, 2))
expit[1]<-exp(gamma[1])/(1+exp(gamma[1]))
expit[2]<-exp(gamma[2])/(1+exp(gamma[2]))
T[1:2 ,1:2] ~ dwish(R[1:2 ,1:2], 2)
sigma2[1:2, 1:2] <-inverse(T[,])
rho <- sigma2[1,2]/sqrt(sigma2[1,1]*sigma2[2,2])
R<-structure(.Data = c(.001,0,0,.001),.Dim = c(2, 2))
}
# R2WinBUGS code to run MC...
2010 Jul 22
1
function return
...E)
pamat<-data[,c("y.1","y.2","y.3")]
z<-pamat[,1]
M<-length(z)
lik<-function(parms){
b0<-parms[1]
b1<-parms[2]
b2<-parms[3]
b3<-parms[4]
ones<-rep(1,M)
### Compute binomial success probabilities
probs<-expit(b0*ones+b1*elev+b2*(elev^2)+b3*forest)
lik<-rep(0,length(z))
### evaluate log of binomial pmf
tmp<-log(dbinom(z,1,probs))
### substitute 0 for missing values
lik[!is.na(z)] <- tmp[!is.na(z)]
lik<- -1*sum(lik)
return(lik)
}
out <- nlm(lik,c(0,0...
2008 May 16
1
SE of difference in fitted probabilities from logistic model.
...ence?
In a linear model this would just be SE(beta_1.hat)*(x.max-x.mean)
(where
beta_1.hat is specific to the particular level of `a' being considered).
If I am not mistaken. (Please correct me if I am!)
But in the logistic model, everything is entangled in the inverse link
function (the ``expit'' function as it is called by some), and I can see
no way of disentangling.
Is there any way of getting at this? I figure that simulation/Monte
Carlo inference/
parametric bootstrapping would provide a workaround, but before I go
that route,
can anyone point me to a simpler method? T...
2004 Nov 05
0
R check passes code and docs that don't match
...consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking Rd files ... OK
* checking for missing documentation entries ... WARNING
Undocumented code objects:
MatrixExp absorbing.mspath coef.mspath crudeinits.mspath deltamethod
ematrix.mspath expit expitsum expsum hazard.mspath lik.mspath logit
mspath.check.consistency mspath.check.ematrix mspath.check.model
mspath.check.qmatrix mspath.check.state mspath.check.times
mspath.form.output mspath.process.covs mspath.results
observed.mspath odds.mspath plot.mspath pmatrix.mspath
pmatrix.p...
2009 Aug 26
2
Statistical question about logistic regression simulation
Hi R help list
I'm simulating logistic regression data with a specified odds ratio
(beta) and have a problem/unexpected behaviour that occurs.
The datasets includes a lognormal exposure and diseased and healthy
subjects.
Here is my loop:
ors <- vector()
for(i in 1:200){
# First, I create a vector with a lognormally distributed exposure:
n <- 10000 # number of study subjects