Displaying 8 results from an estimated 8 matches for "expb".
Did you mean:
exp
2009 Jul 15
5
Grouping data in dataframe
Hello,
I have a dataframe (obtained from read.table()) which looks like
ExpA ExpB ExpC Size
1 12 23 33 1
2 12 24 29 1
3 10 22 34 1
4 25 50 60 2
5 24 53 62 2
6 21 49 61 2
now I want to take all rows that have the same value in the "Size"
column and apply a function...
2010 Jan 09
1
errors when installing packages (ubuntu)
...O2 -c dlv.f -o dlv.o
gfortran -fpic -g -O2 -c dmaket.f -o dmaket.o
gfortran -fpic -g -O2 -c drdfun.f -o drdfun.o
gfortran -fpic -g -O2 -c dsetup.f -o dsetup.o
gfortran -fpic -g -O2 -c evlpoly.f -o evlpoly.o
gfortran -fpic -g -O2 -c evlpoly2.f -o evlpoly2.o
gfortran -fpic -g -O2 -c expbs.f -o expbs.o
gfortran -fpic -g -O2 -c expfn.f -o expfn.o
gfortran -fpic -g -O2 -c gaspbs.f -o gaspbs.o
gfortran -fpic -g -O2 -c gaspfn.f -o gaspfn.o
gfortran -fpic -g -O2 -c gcvcss.f -o gcvcss.o
gfortran -fpic -g -O2 -c gcvfc.f -o gcvfc.o
gfortran -fpic -g -O2 -c hsort.f -o hsort...
2010 Apr 01
2
About logistic regression
...1 4.3537 201 273.46 0.03693 *
genero 1 1.4775 200 271.99 0.22417
grau:genero 1 0.0001 199 271.99 0.99031
SAS:
proc logistic data=psico;
class genero (param=ref ref='0') grau (param=ref ref='0');
model Q1 = grau genero grau*genero / expb;
run;
Type 3 Analysis of
Effects
Wald
Effect DF Chi-Square
Pr > ChiSq
grau 1 1.6835
0.1945
gene...
2007 Oct 06
1
problem installing fields package 3.5 on R 1.8.1 on linux
...eee-fp -fPIC -O2 -g -pipe -march=i386 -mcpu=i686 -c dmaket.f -o
dmaket.o
g77 -mieee-fp -fPIC -O2 -g -pipe -march=i386 -mcpu=i686 -c drdfun.f -o
drdfun.o
g77 -mieee-fp -fPIC -O2 -g -pipe -march=i386 -mcpu=i686 -c dsetup.f -o
dsetup.o
g77 -mieee-fp -fPIC -O2 -g -pipe -march=i386 -mcpu=i686 -c expbs.f -o
expbs.o
g77 -mieee-fp -fPIC -O2 -g -pipe -march=i386 -mcpu=i686 -c expfn.f -o
expfn.o
g77 -mieee-fp -fPIC -O2 -g -pipe -march=i386 -mcpu=i686 -c gaspbs.f -o
gaspbs.o
g77 -mieee-fp -fPIC -O2 -g -pipe -march=i386 -mcpu=i686 -c gaspfn.f -o
gaspfn.o
g77 -mieee-fp -fPIC -O2 -g -pipe -march...
2002 Oct 24
1
package installation
...nstall any R package.
Here is the failure message I obtain:
...
g77 -fPIC -O2 -m486 -fno-strength-reduce -g -c sortm.f -o sortm.o
gcc -shared -o fields.so css.o csstr.o cvrcss.o cvrf.o dchold.o dcopy.o
ddot.o dlv.o dmaket.o
drdfun.o dsetup.o expbs.o expfn.o
gaspbs.o gaspfn.o gcvcss.o
gcvf c.o hsort.o
ifind.o inpoly.o lscv.o m2deb.o mkpoly.o mltdrb.o mltdtd.o msort.o
m ulteb.o multgb.o
multrb.o nkden.o nkreg.o nvden.o radbas.o radfun.o rcss.o
rc...
2003 Jun 14
4
problem installing packages from source on win2k
...-c cvrf.f -o cvrf.o
g77 -O2 -Wall -c dchold.f -o dchold.o
g77 -O2 -Wall -c dcopy.f -o dcopy.o
g77 -O2 -Wall -c ddot.f -o ddot.o
g77 -O2 -Wall -c dlv.f -o dlv.o
g77 -O2 -Wall -c dmaket.f -o dmaket.o
g77 -O2 -Wall -c drdfun.f -o drdfun.o
g77 -O2 -Wall -c dsetup.f -o dsetup.o
g77 -O2 -Wall -c expbs.f -o expbs.o
g77 -O2 -Wall -c expfn.f -o expfn.o
g77 -O2 -Wall -c gaspbs.f -o gaspbs.o
g77 -O2 -Wall -c gaspfn.f -o gaspfn.o
g77 -O2 -Wall -c gcvcss.f -o gcvcss.o
g77 -O2 -Wall -c gcvfc.f -o gcvfc.o
g77 -O2 -Wall -c hsort.f -o hsort.o
g77 -O2 -Wall -c ifind.f -o ifind.o
g77 -O2 -Wall -c in...
2008 Mar 10
1
ML Estimation Differences with R and SAS
...39;other','black','white'))
GLM.1 <- glm(low ~ lwt + ptl + ht + race + smoke ,
family=binomial(logit), data=Dataset)
summary(GLM.1)
MY SAS CODE IS:
PROC LOGISTIC descending DATA=p2;
class race (ref='other');
MODEL LOW = lwt ptl ht race smoke / lackfit parmlabel expb link=logit;
RUN;
MY R OUTPUT IS:
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.92619 0.85549 1.083 0.27897
lwt -0.01650 0.00692 -2.384 0.01712 *
ptl 1.23116 0.44607 2.760 0.00578 **
ht 1.76197 0.707...
2009 Jul 09
2
How to Populate List
...a data.frame and
handled with less need for munging. No need to remove the
zero-padding because the zeros aren't needed in the first place.
You can subset the data with subset, as in
test <- read.table('test.dat',header=TRUE)
expA <- subset(test, experiment=='A')
expB <- subset(test, experiment=='B')
so there is no need to deal with ragged/zero-padded arrays. Your
plots can be grouped automatically with lattice:
require(lattice)
xyplot(value ~ measurement, data=test, group=experiment, type='b')
xyplot(value ~ measurement | experiment, data=...