Displaying 4 results from an estimated 4 matches for "espess".
Did you mean:
espeso
2003 Feb 13
3
search contrasts tutorial
I'm looking for a tutorial or notes on the use of contrasts factor in
linear model in R,
I've found some mails and infos about in various documents about R,
but I've probably missed
a good review on this subject.
--
Robert Espesser
Laboratoire Parole et Langage UMR 6057, CNRS
29 Av. Robert Schuman 13621 AIX (FRANCE)
Tel: +33 (0)4 42 95 36 26 Fax: +33 (0)4 42 59 50 96
http://www.lpl.univ-aix.fr/~espesser
mailto:Robert.Espesser at lpl.univ-aix.fr
2001 Sep 11
2
correlation predictors problem
...attr(,"legend")
[1] 0 ` ' 0.3 `.' 0.6 `,' 0.8 `+' 0.9 `*' 0.95 `B' 1
I used binaries rpm from CRAN .
The same error is obtained with R1.2 on RH6.2
and R.1.3.1-1 on RH7.0 (with the updated glibc2.2).
A similar error is obtained with lm.
Thank you
--
Robert Espesser
Laboratoire Parole et Langage ESA 6057, CNRS
29 Av. Robert Schuman 13621 AIX (FRANCE)
Tel: +33 (0)4 42 95 36 26 Fax: +33 (0)4 42 59 50 96
http://www.lpl.univ-aix.fr/~espesser
mailto:Robert.Espesser at lpl.univ-aix.fr
-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-....
2004 Jan 16
0
anova repeated measure interpretation
...ch are not present in the examples found in the
litterature (Baron, puzzle example) ?
They seem to appear when the both involved factors have more than 2 levels.
Consequently, I am not sure
about the rightness and the interpretation of this model.
I will really appreciate your help.
--
Robert Espesser
Laboratoire Parole et Langage UMR 6057, CNRS
29 Av. Robert Schuman 13621 AIX (FRANCE)
Tel: +33 (0)4 42 95 36 26 Fax: +33 (0)4 42 59 50 96
http://www.lpl.univ-aix.fr/~espesser
mailto:Robert.Espesser at lpl.univ-aix.fr
2001 Dec 23
1
aov for mixed model (fixed and random)?
I'm starting to understand fixed and random effects, but I'm
puzzled a bit. Here is an example from Hays's textbook (which is
great at explaining fixed vs. random effects, at least to dummies
like me), from the section on mixed models. You need
library(nlme) in order to run it.
------
task <- gl(3,2,36) # Three tasks, a fixed effect.
subj <- gl(6,6,36) # Six subjects, a random