search for: epsilon2

Displaying 2 results from an estimated 2 matches for "epsilon2".

Did you mean: epsilon
2007 Aug 05
1
Understanding of Johansen test.
...zero" My understanding is following : suppose, y[t] is of order 3 and p = 1 Then Delta y[t] = A[0]*y[t-1] + epsilon[t] Hence : Delta y1[t] = a[11]*y1[t-1] + a[12]*y1[t-1] +a[13]*y1[t-1] + epsilon1[t] Delta y2[t] = a[12]*y1[t-1] + a[22]*y1[t-1] +a[23]*y1[t-1] + epsilon2[t] Delta y3[t] = a[31]*y1[t-1] + a[32]*y1[t-1] +a[33]*y1[t-1] + epsilon3[t] But is rank of A[0] is 0 then it is possible to find non-zero coef for all of above three equations such that : a[11]*y1[t-1] + a[12]*y1[t-1] +a[13]*y1[t-1] = 0 a[12]*y1[t-1] + a[22]*y1...
2010 Nov 18
0
On efficiency, Vectorize and loops
...3<-function(u,i){ sqrt(2)+sin(pi*outer(i,u)) } # Building the random functional process 'epsilon' epsilon<-lapply(1:n, function(t)local({force(t); function(u){ epsilon<-0 for (j in 1:10){ epsilon<-epsilon+2^(1-j)*Z[j,t]*zeta(u,j) } epsilon<-epsilon } })) epsilon2<-lapply(1:n, function(t)local({force(t); function(u){ crossprod(2^(1-(1:10))*Z[,t],zeta2(1:10)(u)) } })) epsilon3<-lapply(1:n, function(t)local({force(t); function(u){ crossprod(2^(1-(1:10))*Z[,t],zeta3(u,1:10)) } })) ########################### # Building the function '...