Displaying 12 results from an estimated 12 matches for "edges_table_test".
2024 Feb 24
2
igraph_vertex
...mily="Helvetica",
+ vertex.label.font=1,
+ edge.curved=0.5,
+ edge.width= network,
+ layout=layout_with_mds(.))
Error in intI(i, n = x at Dim[1], dn[[1]], give.dn = FALSE) :
Index gr??er als maximales 6
Reproducible example:
edge_list<-read.csv("edges_table_Test.csv")
#create network and add some necessary attributes (vertices) for the plot
network <- graph_from_data_frame(aes_collapsed, directed= FALSE,
vertices = details)
temp<-cluster_optimal(network)
temp<-cbind(membership=temp$membership, N...
2024 Feb 24
1
igraph_vertex
...> + edge.width= network,
>
> + layout=layout_with_mds(.))
>
> Error in intI(i, n = x at Dim[1], dn[[1]], give.dn = FALSE) :
>
> Index gr??er als maximales 6
>
>
>
>
>
> Reproducible example:
>
>
>
> edge_list<-read.csv("edges_table_Test.csv")
>
>
>
> #create network and add some necessary attributes (vertices) for the plot
>
> network <- graph_from_data_frame(aes_collapsed, directed= FALSE,
>
> vertices = details)
>
>
>
>
>
> temp<-clus...
2024 Feb 24
1
igraph_vertex
...layout_with_mds(.))
>>
>> Error in intI(i, n = x at Dim[1], dn[[1]], give.dn = FALSE) :
>>
>> ? Index gr??er als maximales 6
>>
>>
>>
>>
>>
>> Reproducible example:
>>
>>
>>
>> edge_list<-read.csv("edges_table_Test.csv")
>>
>>
>>
>> #create network and add some necessary attributes (vertices) for the
>> plot
>>
>> network <- graph_from_data_frame(aes_collapsed, directed= FALSE,
>>
>> ???????????????????????????????? vertices = details)
>>...
2024 Feb 25
1
igraph_vertex
...anisation
aes_collapsed<-aes %>%
rownames_to_column(var='Names') %>%
tidyr::gather(target, weight, 1:ncol(aes)+1) %>%
dplyr::filter(weight != 0) %>%
mutate(weight = ifelse(weight == "-1", 0, weight)) # here 0 = negative values
write.csv(aes_collapsed, "edges_table_Test.csv", row.names = F)
edge_list<-read.csv("edges_table_Test.csv")
# Network attributes
network <- graph_from_data_frame(aes_collapsed, directed= FALSE,
vertices = details)
temp<-cluster_optimal(network)
temp<-cbind(membership=temp$membe...
2024 Feb 24
1
igraph_vertex
...+???? edge.width= network,
>
> +???? layout=layout_with_mds(.))
>
> Error in intI(i, n = x at Dim[1], dn[[1]], give.dn = FALSE) :
>
> ? Index gr??er als maximales 6
>
> ?
>
> ?
>
> Reproducible example:
>
> ?
>
> edge_list<-read.csv("edges_table_Test.csv")
>
> ?
>
> #create network and add some necessary attributes (vertices) for the
> plot
>
> network <- graph_from_data_frame(aes_collapsed, directed= FALSE,
>
> ???????????????????????????????? vertices = details)
>
> ?
>
> ?
>
> temp...
2024 Mar 20
1
geom_edge & color
...),
color=c("darkblue", "red")[as.factor(edge_list$relationship)], alpha=0.5)) +
Kind regards
Sibylle
Working example
library(circlize)
library(ggplot2)
library(igraph)
library(tidyverse)
library(RColorBrewer)
library(stringi)
library(scico)
library(plotly)
library(ggraph)
edges_table_Test.csv
Names target weight relationship
B.B A.A 4 pos
C.C A.A 5 pos
D.D A.A 5 neg
E.E A.A 5 neg
F.F A.A 1 pos
C.C B.B 5 pos
E.E B.B 1 pos
F.F B.B 2 pos
A.A C.C 5 pos
B.B C.C 1 pos
D.D C.C 5 pos
E.E C.C 5...
2024 Feb 25
1
igraph_vertex
...t;%
> ? rownames_to_column(var='Names') %>%
> ? tidyr::gather(target, weight, 1:ncol(aes)+1) %>%
> ? dplyr::filter(weight != 0) %>%
> ? mutate(weight = ifelse(weight == "-1", 0, weight)) # here 0 =
> negative values
>
> write.csv(aes_collapsed, "edges_table_Test.csv", row.names = F)
> edge_list<-read.csv("edges_table_Test.csv")
>
> # Network attributes
> network <- graph_from_data_frame(aes_collapsed, directed= FALSE,
> ???????????????????????????????? vertices = details)
>
>
> temp<-cluster_optimal(netwo...
2024 Feb 26
1
igraph_vertex
...var='Names') %>%
> > ? tidyr::gather(target, weight, 1:ncol(aes)+1) %>%
> > ? dplyr::filter(weight != 0) %>%
> > ? mutate(weight = ifelse(weight == "-1", 0, weight)) # here 0 =
> > negative values
> >
> > write.csv(aes_collapsed, "edges_table_Test.csv", row.names = F)
> > edge_list<-read.csv("edges_table_Test.csv")
> >
> > # Network attributes
> > network <- graph_from_data_frame(aes_collapsed, directed= FALSE,
> > ???????????????????????????????? vertices = details)
> >
> >...
2024 Mar 21
1
geom_edge & color
...>
> Kind regards
> Sibylle
>
>
>
>
> Working example
>
> library(circlize)
> library(ggplot2)
> library(igraph)
> library(tidyverse)
> library(RColorBrewer)
> library(stringi)
> library(scico)
> library(plotly)
> library(ggraph)
>
> edges_table_Test.csv
>
> Names???target??weight relationship
> B.B?????A.A?????4?????????? pos
> C.C?????A.A?????5?????????? pos
> D.D?????A.A?????5?????????? neg
> E.E?????A.A?????5????????? neg
> F.F?????A.A?????1????????? pos
> C.C?????B.B?????5???????? pos
> E.E?????B.B?????1????????...
2024 Mar 22
1
geom_edge & color
...gards
> Sibylle
>
>
>
>
> Working example
>
> library(circlize)
> library(ggplot2)
> library(igraph)
> library(tidyverse)
> library(RColorBrewer)
> library(stringi)
> library(scico)
> library(plotly)
> library(ggraph)
>
> edges_table_Test.csv
>
> Names target weight relationship
> B.B A.A 4 pos
> C.C A.A 5 pos
> D.D A.A 5 neg
> E.E A.A 5 neg
> F.F A.A 1 pos
> C.C B.B 5 pos
> E.E B.B...
2024 Mar 22
1
geom_edge & color
...>
> > library(ggplot2)
>
> > library(igraph)
>
> > library(tidyverse)
>
> > library(RColorBrewer)
>
> > library(stringi)
>
> > library(scico)
>
> > library(plotly)
>
> > library(ggraph)
>
> >
>
> > edges_table_Test.csv
>
> >
>
> > Names?? target? weight relationship
>
> > B.B???? A.A???? 4?????????? pos
>
> > C.C???? A.A???? 5?????????? pos
>
> > D.D???? A.A???? 5?????????? neg
>
> > E.E???? A.A???? 5????????? neg
>
> > F.F???? A.A???? 1??...
2024 Feb 26
1
igraph_vertex
...ar='Names') %>%
> > tidyr::gather(target, weight, 1:ncol(aes)+1) %>%
> > dplyr::filter(weight != 0) %>%
> > mutate(weight = ifelse(weight == "-1", 0, weight)) # here 0 =
> > negative values
> >
> > write.csv(aes_collapsed, "edges_table_Test.csv", row.names = F)
> > edge_list<-read.csv("edges_table_Test.csv")
> >
> > # Network attributes
> > network <- graph_from_data_frame(aes_collapsed, directed= FALSE,
> > vertices = details)
> >
> >
&...