search for: dxrule

Displaying 4 results from an estimated 4 matches for "dxrule".

Did you mean: darle
2005 Dec 15
3
Name conflict between Epi and ROC packages
...he name conflicts in Epi and ROC packages (2 'ROC' functions are the problem) cause the following code to work once, but not twice: library(MASS); data(cats); x = cats[,2] y = ifelse(cats[,1]=='F',0,1) library(Epi); ROC(x,y,grid=0)$AUC library(ROC); AUC(rocdemo.sca(y, x, dxrule.sca)) What is the standard way of resolving name conflicts? Ask maintainers to resolve it or rename the younger function, use namespaces somehow, or something else? My machine is WinXP, R-2.2.0, ROC and Epi packages are the latest versions. Jarek Tuszynski [[alternative HTML version delete...
2005 Sep 28
1
Fast AUC computation
...y large data set (20,000 observations) for which I want to calculate the area under the Receiver Operator Curve (AUC) for many parameter combinations. I am using the ROC library and the following commands to generate each AUC: rocobj=rocdemo.sca(truth = ymis, data = model$fitted.values, rule = dxrule.sca) #generation of observed ROC object aucobj=AUC(rocobj) #pulling out just the observed AUC - trapezoidal not integrated but they are pretty slow. Does anyone know of a faster way to get the AUC? Thanks, Nina [[alternative HTML version deleted]]
2003 May 28
0
plot() error-msg: "need finite xlim values"
...finite xlim values" --- > set.seed(123) > state <- c(0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, + 1, 1, 1) > markers <- c(1, 2, 1, 1, 2, 3, 3, 4, 2, 1, 1, 3, 2, 3, 2, 4, + 5, 2, 3, 4) + runif(20, -1, 1) > roc1 <- rocdemo.sca(truth = state, data = markers, rule = dxrule.sca, seqlen = 5) > plot(roc1) Error in plot.window(xlim, ylim, log, asp, ...) : need finite xlim values In addition: Warning messages: 1: no finite arguments to min; returning Inf 2: no finite arguments to max; returning -Inf 3: no finite arguments to min; returning Inf 4: no finite argu...
2005 Sep 22
2
Survey of ROC AUC / wilcoxon test functions
...colAUC(x, y, alg="ROC") auc[2,i] = colAUC(x, y, alg="Wilcox") auc[3,i] = wilcox.test(x1, x2, exact=0)$statistic / (n1*n2) auc[4,i] = (sum(r[1:n1]) - n1*(n1+1)/2) / (n1*n2) auc[5,i] = roc.area(y, x)$A.tilda auc[6,i] = AUC(rocdemo.sca(y, x, dxrule.sca)) auc[7,i] = performance(prediction( x, y),"auc")@y.values[[1]] auc[8,i] = ROC(x,y,grid=0)$AUC # get AUC by 'ROC' auc[9,i] = auROC(y, x) # get AUC by 'auROC' pval[1,i] = wilcox.test(x1, x2, exact=0)$p.value pval[2,i] = wilcox.test(x1, x2, exact=1)$...