Displaying 4 results from an estimated 4 matches for "dose1".
Did you mean:
dose
2008 Jul 26
1
Can't get the correct order from melt.data.frame of reshape library.
Simple illustration,
> df3 <- data.frame(id=c(3,2,1,4), age=c(40,50,60,50), dose1=c(1,2,1,2), dose2=c(2,1,2,1), dose4=c(3,3,3,3))> df3 id age dose1 dose2 dose41 3 40 1 2 32 2 50 2 1 33 1 60 1 2 34 4 50 2 1 3> melt.data.frame(df3, id.var=1:2, na.rm=T) id age variable value1 3 40 dose1 12 2 50 dose1...
2007 Aug 14
1
glm(family=binomial) and lmer
...**
log(dose) 1.9644 0.1750 11.22 <2e-16 ***
Null deviance: 408.353 on 4 degrees of freedom
Residual deviance: 10.828 on 3 degrees of freedom
AIC: 32.287
Another way to do the same analysis is to reformulate the data, and use GLM
with weights:
>y1=c(rep(0,5),rep(1,5))
>dose1=rep(dose,2)
>number = c(batch-dead,dead)
>data1=as.data.frame(cbind (y1,dose,number))
>model2=glm(y1~log(dose1),binomial,weights=number,data=data1)
>summary(model2)
Which returns:
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -4.5318 0.4381 -...
2008 Oct 28
3
Dose Profile
Hi Everyone,
I have data in a long format e.g. there is one row per patient but each
follow-up appointment is included in the row. So, a snippet of the data
looks like this:
TrialNo Drug Sex Rand Adate1 Date1 Dose1 Time1 Adate2 Date2 Dose2
Time2 B1001029 LTG M 15719 30/04/2003 15825 150 106 29/08/2003 15946 200
227 B1117003 LTG M 15734 30/04/2003 15825 200 91 03/09/2003 15951 250 217
B138015 LTG M 14923 06/02/2001 15012 225 89 08/05/2001 15103 300 180
B112003 TPM F 14914 15/01/2001 14990 60 76 05/03/2001 15...
2003 Jan 29
3
multinomial conditional logit models
A multinomial logit model can be specified as a conditional logit
model after restructuring the data. Doing so gives flexibility in
imposing restrictions on the dependent variable. One application is
to specify a loglinear model for square tables, e.g. quasi-symmetry
or quasi-independence, as a multinomial logit model with covariates.
Further details on this technique and examples with several