search for: dndt

Displaying 5 results from an estimated 5 matches for "dndt".

Did you mean: dnat
2017 Jun 21
4
How to apply a system of ordinary differential equations to a cell grid?
...ere is an example to represent the system of ODEs: solve_sir_model <- function (times, parameters) { sir_model <- function (times, states, parameters) { with(as.list(c(states, parameters)), { dSdt <- -beta*S*I dIdt <- beta*S*I-gamma*I dRdt <- gamma*I dNdt <- dSdt + dIdt + dRdt return(list(c(dSdt, dIdt, dRdt, dNdt))) }) } states <- c(S = 99, I = 1, R = 0, N = 100) return(ode(y = states, times = times, func = sir_model, parms = parameters)) } require(deSolve) output <- as.data.frame(solve_sir_model(times = seq(0, 5, by = 1...
2008 Nov 21
1
lsoda warning "too much accuracy requested"
...) SI <- 80 model <- function(t, x, parms) { H <- x[1] BA <- x[2] N <- x[3] with(as.list(parms), { dHdt <- (b/c)*(((a**c)*((H)**(1-c))-H)) dBAdt <- -(BA*b)*(c0+(c1*SI)-log(BA))/(log(1-((H/a)**c))) dNdt <- N*alpha*(((log(1-((H/a)**c)))/b)**beta) - (gamma*BA) list(c(dHdt, dBAdt, dNdt)) }) } times <- seq(0, 40, 1) parms <- c(a=(SI*1.258621)-1.32759, b=0.1, c=0.4, c0=4.6012, c1=0.013597, alpha=0.0005, beta=0.5, gamma=0.01) start <- c(H=0.1, B...
2017 Jul 17
0
How to apply a system of ordinary differential equations to a cell grid?
...rk with one time step: solve_sir_model <- function (times, parameters) { sir_model <- function (times, states, parameters) { with(as.list(c(states, parameters)), { dSdt <- -beta*S*I dIdt <- beta*S*I-gamma*I dRdt <- gamma*I dNdt <- dSdt + dIdt + dRdt return(list(c(dSdt, dIdt, dRdt, dNdt))) }) } states <- c(S = 99, I = 1, R = 0, N = 100) return(ode(y = states, times = times, func = sir_model, parms = parameters, method = "iteration")) } require(deSolve) out...
2005 Oct 27
1
Fitting of Non-Linear Diff Equations and Parameter Estimation
...R 2.2.0 with Windows XP i am trying to fit nonlinear differential equation to data sets which looks like this: Week N C 0 1 1 1 5 6 2 6.2 12.2 3 59 71.2 4 39 110.2 5 38 148.2 6 44 192.2 7 20.4 212.6 8 19.4 232 9 34.2 266.2 10 35.4 301.6 and i need to fit these data to the following diff equation: dNdt=a*N-b*N*C, dCdt=N^2, Where a=birth rate, b=death rate and N= Current count, C= Cumulative Count. i need to fit the differential equation, solve and obtain parameters a,b. can someone help with this, Thanks Raj [[alternative HTML version deleted]]
2017 Jun 21
0
How to apply a system of ordinary differential equations to a cell grid?
...: > > solve_sir_model <- function (times, parameters) { > > sir_model <- function (times, states, parameters) { > > with(as.list(c(states, parameters)), { > > dSdt <- -beta*S*I > dIdt <- beta*S*I-gamma*I > dRdt <- gamma*I > dNdt <- dSdt + dIdt + dRdt > > return(list(c(dSdt, dIdt, dRdt, dNdt))) > > }) > } > > states <- c(S = 99, I = 1, R = 0, N = 100) > return(ode(y = states, times = times, func = sir_model, parms = parameters)) > } > > require(deSolve) > output <-...