Displaying 4 results from an estimated 4 matches for "devainc".
Did you mean:
devaince
2006 Nov 30
0
Standardized deviance residuals in plot.lm
...lm.object x with plot(x) are calculated as
r <- residuals(x)
s <- sqrt(deviance(x)/df.residual(x))
w <- weights(x)
hii <- lm.influence(x)$hat
r.w <- if (is.null(w)) r else (sqrt(w) * r)
rs <- r.w/(s * sqrt(1 - hii))
This implies that, for example, for binomial B(ni,pi) data the devaince
residials (which are just r) are weighted not only with sqrt(1-hii), but
also with 1/sqrt(ni) and s, leading to absurd values. As a result all
leverage/outlier diagnostics is absolutly wrong.
Am I right and this should be reported as a bug?
Many thanks,
Tatyana
--
Tatyana Krivobokova
Bielef...
2009 Jun 15
2
coxph and robust variance estimation
...rsion 2.9.0)
coxph.fit0 <- coxph(y ~ z2_ + cluster(as.factor(keys))+ strata(stratvar_),
method="breslow" ,robust=T )
coxph.fit1 <- coxph(y ~ z_ + cluster(as.factor(keys))+ strata(stratvar_),
method="breslow" ,robust=T ) # marker and covariates
# Analysis of Devaince table
coxph.aov <- anova(coxph.fit0 , coxph.fit1, test="Chisq")
In the single models coxph.fit0 and coxph.fit1 I can use a robust variance estimation.
It seems that the function anova don't use a robust estimation for the analysis of deviance.
My question is, how can I use robus...
2005 Sep 23
1
Smooth terms significance in GAM models
hi,
i'm using gam() function from package mgcv with default option (edf
estimated by GCV).
>G=gam(y ~ s(x0, k = 5) + s(x1) + s(x2, k = 3))
>SG=summary(G)
Formula:
y ~ +s(x0, k = 5) + s(x1) + s(x2, k = 3)
Parametric coefficients:
Estimate std. err. t ratio Pr(>|t|)
(Intercept) 3.462e+07 1.965e+05 176.2 < 2.22e-16
Approximate significance of smooth
2009 Jun 15
0
books on Time serie
...(y ~ z2_ + cluster(as.factor(keys))+
> strata(stratvar_),
> method="breslow" ,robust=T )
>
> coxph.fit1 <- coxph(y ~ z_ + cluster(as.factor(keys))+
> strata(stratvar_),
> method="breslow" ,robust=T ) # marker and covariates
>
> # Analysis of Devaince table
> coxph.aov <- anova(coxph.fit0 , coxph.fit1, test="Chisq")
>
> In the single models coxph.fit0 and coxph.fit1 I can use a robust
> variance estimation.
> It seems that the function anova don't use a robust estimation for
> the analysis of deviance.
>...