search for: dcat

Displaying 9 results from an estimated 9 matches for "dcat".

Did you mean: cat
2010 Jun 23
1
A question about R2Winbugs
...+a*mu[k,t-1] } # cluster varicance tau sigma0.r[k] ~ dbeta(1,1) sigma.r[k] <- s*sigma0.r[k] sigma[k] <- sigma.r[k]*sigma.r[k] tau[k] <- 1/sigma[k] } # cluster indicator Z and observation X for (n in 1:N) { Z[n,1] ~ dcat(q1[1:K]) X[n,1] ~ dnorm(mu[Z[n,1],1],tau[Z[n,1]]) for (t in 2:T) { Z[n,t] ~ dcat(q[Z[n,t-1],1:K]) X[n,t] ~ dnorm(mu[Z[n,t],t],tau[Z[n,t]]) } } # prior on transition matrix Q # each row of Q has a Dirichlet prior realized by Gamma...
2006 Apr 05
2
R2WinBUGS error
...lt;- -(k[j] + mu[i] + b[i]) } # probability that response = j p[i,1] <- max( min(1 - Q[i,1], 1), 0) for (j in 2 : Ncut) { p[i,j] <- max( min(Q[i,j-1] - Q[i,j],1), 0) } p[i,(Ncut+1)] <- max( min(Q[i,Ncut], 1), 0) q02[i] ~ dcat(p[i, ]) } } [[alternative HTML version deleted]]
2008 Jan 04
2
R2WinBUGS sending variables as factors
...e Variables nSeaWiFS <- mSeaW/s_dSeaW for(i in 1:N) { log(lambda[i]) <- delta0 + alpha1 * Month[i] + alpha2 * Lat[i] + beta1 * (SeaW[i] - nSeaW) logit(p[i]) <- gamma0 mu[i, 1] <- 0 mu[i, 2] <- lambda[i] mu.i[i] <- mu[i, index[i]] index[i] ~ dcat(theta[i, 1:2]) theta[i, 1] <- p[i] theta[i, 2] <- 1 - p[i] # mixture YFTCPUE[i] ~ dpois(mu.i[i]) } # recalculate the original intercept term Intercept <- delta0 - beta1 * nSeaW #prior on regression coefficients beta1 ~ dnorm(0,1.0E-6) alpha2 ~ dnorm(0,1.0E-...
2010 Mar 16
0
an ordinal regression MCMC run high correlation
...rrelation of a1 and tau. I thought 10,000 is a pretty big number and the chain converges really slow. I am a new MCMC user and don't know other ways to solve this problem. Will someone please give some suggestions that may apply to this specific modeling? model { for ( i in 1:N) { response[i]~dcat( p[physician[i], ] ) } for (j in 1:Nt) { p[j,1]<-1-Q[j,1] p[j,2]<-Q[j,1]-Q[j,2] p[j,3]<-Q[j,2] logit(Q[j,1])<--c[j] logit(Q[j,2])<--(c[j]+theta) score[j]<-0.5*p[j,2]+p[j,3] c[j]~dnorm(a1, tau) } a1~dnorm(0, 1.0E-06) theta~dnorm(0, 1.0E-06)I(0,) tau~dgamma(0.001,0.001) } list(N=6...
2010 Mar 16
0
Fw: an ordinal regression MCMC run high correlation
...0 is a pretty > big number and the chain converges really slow. I am a new > MCMC user and don't know other ways to solve this problem. > Will someone please give some suggestions that may apply to > this specific modeling? > > model { > for ( i in 1:N) { > response[i]~dcat( p[physician[i], ] ) > } > > for (j in 1:Nt) { > p[j,1]<-1-Q[j,1] > p[j,2]<-Q[j,1]-Q[j,2] > p[j,3]<-Q[j,2] > logit(Q[j,1])<--c[j] > logit(Q[j,2])<--(c[j]+theta) > score[j]<-0.5*p[j,2]+p[j,3] > c[j]~dnorm(a1, tau) > } > a1~dnorm(0, 1.0E-06) >...
2012 Oct 26
1
Openbugs- Array Index
...[i] <- prop[i]/sum(prop[]) } for(i in 1:(S+m)){ r[i] ~ dnorm(mu.r,tau.r) I(-2,2)# generating parameters related to detectability p[i] <- 1/(1+exp(-(r[i])))# individual-level detection probability w[i] ~ dbern(psi)# indicator variable whether each species is exposed to sampling or not G[i] ~ dcat(prob[1:g])# group identity for(h in 1:2){# habitat effects habitat.eff[i,h] ~ dnorm(mu.h[G[i],h],tau.h[G[i],h]) I(-2,2) } for(j in 1:4){# fitting process # ecological process model lambda[i,j] <- exp(habitat.eff[i,habitat[j]]) Z[i,j] ~ dpois(lambda[i,j])# latent abundance of each species at ea...
2006 Apr 06
0
R2WinBUGS erro
...+ mu[i] + b[i]) } # probability that response = j p[i,1] <- max( min(1 - Q[i,1], 1), 0) for (j in 2 : Ncut) { p[i,j] <- max( min(Q[i,j-1] - Q[i,j],1), 0) } p[i,(Ncut+1)] <- max( min(Q[i,Ncut], 1), 0) q02[i] ~ dcat(p[i, ]) } } [[alternative HTML version deleted]]
2010 Apr 08
1
a small question about R with Winbugs
...ivariate normal, but Winbugs always says "expected multivariate node", does that mean I miss something at initialization? I will really appreciate the help to solve this problem Here is the R code, and Winbugs code. model { for(i in 1:N){ y[i,1:2] ~ dmnorm(mu[i,],tau[i,,]) S[i] ~ dcat(pi[]) mu[i,1:2] <- mu.star[S[i],] tau[i,1:2,1:2] <- tau.star[S[i],,]} # Constructive DPP # Stick breaking prior p[1] <- r[1] for (j in 2:C) {p[j] <- r[j]*(1-r[j-1])*p[j-1]/r[j-1]} p.sum <- sum(p[]) for (j in 1:C) {r[j] ~ dbeta(1,alpha); pi[j] <- p[j]/p.sum} # Basel...
2012 Jul 13
3
Help with R2 OpenBUGs
...op[i]/sum(prop[]) } for(i in 1:(S+m)){ r[i] ~ dnorm(mu.r,tau.r) I(-5,5) # generating parameters related to detectability p[i] <- 1/(1+exp(-(r[i]))) # individual-level detection probability w[i] ~ dbern(psi) # indicator variable whether each species is exposed to sampling or not G[i] ~ dcat(prob[1:g]) # group identity for(h in 1:3){ # habitat effects habitat.eff[i,h] ~ dnorm(mu.h[G[i],h],tau.h[G[i],h]) I(-5,5) } for(j in 1:20){ # fitting process # ecological process model lambda[i,j] <- exp(habitat.eff[i,habitat[j]]) Z[i,j] ~ dpois(lambda[i,j]) # latent abundance of each sp...