search for: d_addr

Displaying 7 results from an estimated 7 matches for "d_addr".

Did you mean: __addr
2016 Mar 11
0
[PATCH v1 06/19] zsmalloc: clean up many BUG_ON
...unsigned long f_objidx, f_offset; void *vaddr; - BUG_ON(!obj); - obj &= ~OBJ_ALLOCATED_TAG; obj_to_location(obj, &f_page, &f_objidx); first_page = get_first_page(f_page); @@ -1546,7 +1540,6 @@ static void zs_object_copy(unsigned long dst, unsigned long src, kunmap_atomic(d_addr); kunmap_atomic(s_addr); s_page = get_next_page(s_page); - BUG_ON(!s_page); s_addr = kmap_atomic(s_page); d_addr = kmap_atomic(d_page); s_size = class->size - written; @@ -1556,7 +1549,6 @@ static void zs_object_copy(unsigned long dst, unsigned long src, if (d_off >=...
2016 Mar 11
31
[PATCH v1 00/19] Support non-lru page migration
Recently, I got many reports about perfermance degradation in embedded system(Android mobile phone, webOS TV and so on) and failed to fork easily. The problem was fragmentation caused by zram and GPU driver pages. Their pages cannot be migrated so compaction cannot work well, either so reclaimer ends up shrinking all of working set pages. It made system very slow and even to fail to fork easily.
2016 Mar 11
31
[PATCH v1 00/19] Support non-lru page migration
Recently, I got many reports about perfermance degradation in embedded system(Android mobile phone, webOS TV and so on) and failed to fork easily. The problem was fragmentation caused by zram and GPU driver pages. Their pages cannot be migrated so compaction cannot work well, either so reclaimer ends up shrinking all of working set pages. It made system very slow and even to fail to fork easily.
2016 Mar 21
22
[PATCH v2 00/18] Support non-lru page migration
Recently, I got many reports about perfermance degradation in embedded system(Android mobile phone, webOS TV and so on) and failed to fork easily. The problem was fragmentation caused by zram and GPU driver pages. Their pages cannot be migrated so compaction cannot work well, either so reclaimer ends up shrinking all of working set pages. It made system very slow and even to fail to fork easily.
2016 Mar 21
22
[PATCH v2 00/18] Support non-lru page migration
Recently, I got many reports about perfermance degradation in embedded system(Android mobile phone, webOS TV and so on) and failed to fork easily. The problem was fragmentation caused by zram and GPU driver pages. Their pages cannot be migrated so compaction cannot work well, either so reclaimer ends up shrinking all of working set pages. It made system very slow and even to fail to fork easily.
2016 Mar 30
33
[PATCH v3 00/16] Support non-lru page migration
Recently, I got many reports about perfermance degradation in embedded system(Android mobile phone, webOS TV and so on) and failed to fork easily. The problem was fragmentation caused by zram and GPU driver pages. Their pages cannot be migrated so compaction cannot work well, either so reclaimer ends up shrinking all of working set pages. It made system very slow and even to fail to fork easily.
2016 Mar 30
33
[PATCH v3 00/16] Support non-lru page migration
Recently, I got many reports about perfermance degradation in embedded system(Android mobile phone, webOS TV and so on) and failed to fork easily. The problem was fragmentation caused by zram and GPU driver pages. Their pages cannot be migrated so compaction cannot work well, either so reclaimer ends up shrinking all of working set pages. It made system very slow and even to fail to fork easily.