Displaying 1 result from an estimated 1 matches for "d2f".
Did you mean:
  d2
  
2005 Dec 04
1
Understanding nonlinear optimization and Rosenbrock's banana valley function?
...t and hessian
#
# Initial evaluation
   f.i <- f(p)
   f0 <- f.i+1
# Iterate
   for(i in 1:iterlim){
     df <- attr(f.i, "gradient")
#   Gradient sufficiently small?
     if(sum(df^2)<(gradtol^2)){
       return(list(minimum=f.i, estimate=p+dp,
           gradient=df, hessian=d2f, code=1,
           iterations=i))
     }
#
     d2f <- attr(f.i, "hessian")
     dp <- (-solve(d2f, df))
#   Step sufficiently small?
     if(sum(dp^2)<(steptol^2)){
       return(list(minimum=f.i, estimate=p+dp,
           gradient=df, hessian=d2f, code=2,
           iterations...