search for: cvnn1

Displaying 4 results from an estimated 4 matches for "cvnn1".

Did you mean: cvnn2
2004 Sep 23
0
nnet with weights parameter: odd error
Dear R-users I use nnet for a classification (2 classes) problem. I use the code CVnn1, CVnn2 as described in V&R. The thing I changed to the code is: I define the (class) weight for each observation in each cv 'bag' and give the vector of weights as parameter of nnet(..weights = weight.vector...) Unfortunately I get an error during some (but not all!) inner-fold cv...
2004 Mar 30
1
classification with nnet: handling unequal class sizes
...<- as.numeric(as.factor((predict(learn, data[ri == i,], type = "class")))) for (k in 1:dim(rae.matrix)[1]) { if (rae.vector[k] == 1) rae.matrix[k,1] <- rae.matrix[k,1] + 1 else rae.matrix[k,2] <- rae.matrix[k,2] + 1 } rae.matrix } CVnn1 <- function(formula, data, nreps=1, ri, verbose, ...) { totalerror <- 0 truth <- data[,deparse(formula[[2]])] res <- matrix(0, nrow(data), length(levels(truth))) if(verbose > 20) cat(" inner fold") for (i in sort(unique(ri))) {...
2011 Jan 05
0
Nnet and AIC: selection of a parsimonious parameterisation
...;AIC ) { cat('\n j',j,'AIC'=AIC.tmp,'AIC_1',AIC,'\n') break } else { nn=nn.tmp; AIC=AIC.tmp; RSS=RSS.tmp } } list(choice=sqrt(RSS/100),nparam=sum(nn$wts!=0),AIC=AIC,nn=nn) } #Modified function for optimisation CVnn1 <- function(decay, formula, data, nreps=1, ri, size, linout, skip, maxit, optimFlag=FALSE, alpha) { truth <- log10(data$perf) nn <- nnet(formula, data[ri !=1,], trace=FALSE, size=size, linout=linout, skip=skip, maxit=maxit, Hess = TRUE) RSS=(alpha-1)*sum((truth[ri != 1] - pre...
2004 Sep 23
0
nnet and weights: error analysis using V&R example
...ce = T) fgl1 <- fgl fgl1[1:9] <- lapply(fgl[, 1:9], function(x) {r <- range(x); (x - r[1])/diff(r)}) CVnn2 <- function(formula, data, size = c(0,4,4,10,10), lambda = c(0, rep(c(0.001, 0.01),2)), nreps = 1, nifold = 5, verbose = 99, ...) { CVnn1 <- function(formula, data, nreps=1, ri, verbose, ...) { totalerror <- 0 truth <- data[,deparse(formula[[2]])] res <- matrix(0, nrow(data), length(levels(truth))) if(verbose > 20) cat(" inner fold") for (i in sort(unique(r...