search for: cut_number

Displaying 9 results from an estimated 9 matches for "cut_number".

2018 Feb 26
3
Random Seed Location
...654321) B. Install and load the caret, ggplot2 and e1071 packages. > install.packages(?caret?) > install.packages(?ggplot2?) > install.packages(?e1071?) > library(caret) > library(ggplot2) > library(e1071) C. Bin the predictor variables with approximately equal counts using the cut_number function from the ggplot2 package. We will use 20 bins. > InvestTech[, 1] <- cut_number(InvestTech[, 1], n = 20) > InvestTech[, 2] <- cut_number(InvestTech[, 2], n = 20) > outOfSample[, 1] <- cut_number(outOfSample[, 1], n = 20) > outOfSample[, 2] <- cut_number(outOfSampl...
2018 Feb 27
0
Random Seed Location
...1071 packages. > > > install.packages(?caret?) > > install.packages(?ggplot2?) > > install.packages(?e1071?) > > library(caret) > > library(ggplot2) > > library(e1071) > > C. Bin the predictor variables with approximately equal counts using > the cut_number function from the ggplot2 package. We will use 20 bins. > > > InvestTech[, 1] <- cut_number(InvestTech[, 1], n = 20) > > InvestTech[, 2] <- cut_number(InvestTech[, 2], n = 20) > > outOfSample[, 1] <- cut_number(outOfSample[, 1], n = 20) > > outOfSample[, 2] <...
2018 Mar 04
3
Random Seed Location
...packages. > >> install.packages(?caret?) >> install.packages(?ggplot2?) >> install.packages(?e1071?) >> library(caret) >> library(ggplot2) >> library(e1071) > > C. Bin the predictor variables with approximately equal counts using > the cut_number function from the ggplot2 package. We will use 20 bins. > >> InvestTech[, 1] <- cut_number(InvestTech[, 1], n = 20) >> InvestTech[, 2] <- cut_number(InvestTech[, 2], n = 20) >> outOfSample[, 1] <- cut_number(outOfSample[, 1], n = 20) >> outOfSample[, 2] &lt...
2018 Mar 04
0
Random Seed Location
...ll.packages(?caret?) > >> install.packages(?ggplot2?) > >> install.packages(?e1071?) > >> library(caret) > >> library(ggplot2) > >> library(e1071) > > > > C. Bin the predictor variables with approximately equal counts using > > the cut_number function from the ggplot2 package. We will use 20 bins. > > > >> InvestTech[, 1] <- cut_number(InvestTech[, 1], n = 20) > >> InvestTech[, 2] <- cut_number(InvestTech[, 2], n = 20) > >> outOfSample[, 1] <- cut_number(outOfSample[, 1], n = 20) > >>...
2018 Mar 04
2
Random Seed Location
...t;> install.packages(?ggplot2?) >> >> install.packages(?e1071?) >> >> library(caret) >> >> library(ggplot2) >> >> library(e1071) >> > >> > C. Bin the predictor variables with approximately equal counts using >> > the cut_number function from the ggplot2 package. We will use 20 bins. >> > >> >> InvestTech[, 1] <- cut_number(InvestTech[, 1], n = 20) >> >> InvestTech[, 2] <- cut_number(InvestTech[, 2], n = 20) >> >> outOfSample[, 1] <- cut_number(outOfSample[, 1], n = 20...
2018 Mar 04
0
Random Seed Location
...es(?ggplot2?) >>>>> install.packages(?e1071?) >>>>> library(caret) >>>>> library(ggplot2) >>>>> library(e1071) >>>> >>>> C. Bin the predictor variables with approximately equal counts using >>>> the cut_number function from the ggplot2 package. We will use 20 bins. >>>> >>>>> InvestTech[, 1] <- cut_number(InvestTech[, 1], n = 20) >>>>> InvestTech[, 2] <- cut_number(InvestTech[, 2], n = 20) >>>>> outOfSample[, 1] <- cut_number(outOfSample[...
2018 Mar 05
1
Random Seed Location
...gt;>>>> library(caret) >>>>>> library(ggplot2) >>>>>> library(e1071) >>>>> >>>>> >>>>> C. Bin the predictor variables with approximately equal counts >>>>> using >>>>> the cut_number function from the ggplot2 package. We will use 20 bins. >>>>> >>>>>> InvestTech[, 1] <- cut_number(InvestTech[, 1], n = 20) >>>>>> InvestTech[, 2] <- cut_number(InvestTech[, 2], n = 20) >>>>>> outOfSample[, 1] <- cut_num...
2009 Feb 25
0
ggplot2 0.8.2
...at http://groups.google.com/group/ggplot2, or track development at http://github.com/hadley/ggplot2 ggplot2 0.8.2 (2008-02-23) ---------------------------------------- New features * borders, fortify.map and map_data to make it easier to draw map borders and choropleth maps * cut_interval and cut_number utility functions to discretise continuous variables * stat_summary has reparameterised to make it easier to specify different summary functions. It now has four parameters: fun.y, fun.ymin and fun.ymax; and fun.data. See the documentation for stat_summary for more details Minor improvements *...
2009 Feb 25
0
ggplot2 0.8.2
...at http://groups.google.com/group/ggplot2, or track development at http://github.com/hadley/ggplot2 ggplot2 0.8.2 (2008-02-23) ---------------------------------------- New features * borders, fortify.map and map_data to make it easier to draw map borders and choropleth maps * cut_interval and cut_number utility functions to discretise continuous variables * stat_summary has reparameterised to make it easier to specify different summary functions. It now has four parameters: fun.y, fun.ymin and fun.ymax; and fun.data. See the documentation for stat_summary for more details Minor improvements *...