Displaying 8 results from an estimated 8 matches for "covm".
Did you mean:
com
2006 Jul 11
2
Multiple tests on 2 way-ANOVA
...sign (see Piantadosi 2005, p. 509)
cm1 <- matrix(c(0, 1, 0, 0, 0, 1), nrow = 2, ncol=3, byrow=TRUE,
dimnames = list(c("A", "B"), c("C.1", "C.2", "C.3")))
# cm1 = contrast matrix for main effects
v1 <- csimint(estpar=c(100, 6, 5), df=4*n-3, covm=cov1*sigma^2/n, cmatrix=cm1, conf.level=0.95)
summary(v1)
The adjusted p-values are almost the Bonferroni p-values.
If I understood right: You need not to adjust for multiple testing
on main effects in a 2x2 factorial design
assuming the absence of interaction.
I do not think that there is a bu...
2007 Feb 22
0
Error in solve.default
...6] <- prob %ip% means
means.d <- means[, , 1] - matrix(shrink[, 4], nrow = r, ncol = k,
byrow = T)
means.v <- prob %*% means.d^2
shrink[, 5] <- sqrt(K2 * (prob %*% means[, , 2]^2) + means.v)
corr.m.m <- if(!corrs) NULL else {
covm <- matrix(0, nrow = k, ncol = k, dimnames =
list(names(Y),
names(Y)))
for(i in 1:r) {
covd <- means.d[i, ] %o% means.d[i, ]
covm <- covm + prob[i] * (covd + K2 * cov.m[i, ,
])
}...
2012 Apr 16
0
warning message: coxme with package multcomp
...est())
General Linear Hypotheses
Multiple Comparisons of Means: Tukey Contrasts
Linear Hypotheses:
Estimate
tx - meta == 0 -22.1626
uv - meta == 0 -0.6932
uv - tx == 0 21.4694
Global Test:
Chisq DF Pr(>Chisq)
1 71.94 1 2.217e-17
Warning message:
In cov2cor(covm) :
diag(.) had 0 or NA entries; non-finite result is doubtful
and all pairwise comparisons between treatments are then not possible:
summary(pp.coxme.glht,test=adjusted("Westfall"))
Error in if (!chkcorr(corr)) stop(sQuote("corr"), " is not a correlation
matrix")...
2003 May 19
1
multcomp and glm
...s are more likely to cross some
features than others and am using csimtest in the package multcomp to do
so.
x <- coef(model)
var.cov <- vcov(model)
df <- model$df.residual
contrast.matrix <- contrMat(rep(2,length(x), type = "Tukey")
post.hoc <- csimtest(estpar = x, df=df, covm = var.cov, cmatrix =
contrast.matrix)
summary(post.hoc)
My questions are:
(1) Have I entered my parameters for the posthoc analysis correctly and
does it matter which categorical variable I use as my reference category?
(2) How do I omit the continuous variable "null.cross" from the lis...
2006 Feb 07
1
post-hoc comparisons following glmm
Dear R community,
I performed a generalized linear mixed model using glmmPQL (MASS
library) to analyse my data i.e : y is the response with a poisson
distribution, t and Trait are the independent variables which are
continuous and categorical (3 categories C, M and F) respectively, ind
is the random variable.
mydata<-glmmPQL(y~t+Trait,random=~1|ind,family=poisson,data=tab)
Do you think it
2006 Aug 03
1
question about dll crashing R
...y ) , &nry , &zero ,
REAL( ans ) , &nrx ) ;
UNPROTECT( 1 ) ;
return( ans ) ;
}
I am also generating random multiavriate normals using
the (not pretty) code
*
1) Generate P independent standard normal deviates -
Ei ~ N(0,1)
2) Using Cholesky decomposition find A s.t.
trans(A)*A = COVM
3) trans(A)E + MEANV ~ N(MEANV,COVM)
*/
SEXP mvntest (SEXP mean, SEXP cov, SEXP temp)
{ int nrx , ncx , nry , ncy ,info,mode;
SEXP xdims , ydims , ans;
int i,j, one=1;
info = 1;
xdims = getAttrib (mean , R_DimSymbol ) ;
ydims = getAttrib (cov , R_DimSymbol ) ;
mode = REALSXP;
nrx = INTEGE...
2006 Jul 25
1
Multiple tests on repeated measurements
...1, 0, 0, 0, 1, 1), nrow = 2, ncol=4, byrow=TRUE,
dimnames = list(c("diff/v=0", "diff/v=1"), c("C.1", "C.2", "C.3", "C.4")))
v4 <- csimint(estpar=par4, df=n-6, # I'm not sure whether I found
# the correct degrees of freedom
covm=cov4,
cmatrix=cm4, conf.level=0.95)
sv4 <- summary(v4)
# 2. Method: I found in Handbook of Statistics Vol 13, p.616,
# same can be found in http://home.clara.net/sisa/bonhlp.htm
# Bonferroni on correlated outcomes:
raw.p <- sv4$p.value.raw
co4 <- cor(df$y[df$v==0],df$y[df$v==1])
rho <...
2008 May 28
2
Tukey HSD (or other post hoc tests) following repeated measures ANOVA
...> Cond.lmat <- c(0,1,-1)
> Tukey <- glht.mmc(RT2.aov, focus = "Cond", focus.lmat = Cond.lmat)
yielding
Error in mvt(lower = carg$lower, upper = carg$upper, df = df, corr =
carg$corr, :
NA/NaN/Inf in foreign function call (arg 6)
In addition: Warning message:
In cov2cor(covm) : diagonal has non-finite entries
> Tukey
height
Thank you very much for your help!
Ullrich
Dr Ullrich Ecker
Postdoctoral Research Associate
Cognitive Science Laboratories
School of Psychology (Mailbag M304)
Room 211 Sanders Building
University of Western Australia
35 Stirling Hw...