search for: confmtr

Displaying 7 results from an estimated 7 matches for "confmtr".

Did you mean: concstr
2018 Feb 26
3
Random Seed Location
...> model <- naiveBayes(`Purchase (1=yes, 0=no)` ~ ., data = InvestTechTrain) > prob <- predict(model, newdata = InvestTechVal, type = ?raw?) > pred <- ifelse(prob[, 2] >= 0.3, 1, 0) F. Use the confusionMatrix function in the caret package to output the confusion matrix. > confMtr <- confusionMatrix(pred,unlist(InvestTechVal[, 3]),mode = ?everything?, positive = ?1?) > accuracy <- confMtr$overall[1] > valError <- 1 ? accuracy > confMtr G. Classify the 18 new (out-of-sample) readers using the following code. > prob <- predict(model, newdata = outOfSa...
2018 Feb 27
0
Random Seed Location
...e (1=yes, 0=no)` ~ ., data = InvestTechTrain) > > prob <- predict(model, newdata = InvestTechVal, type = ?raw?) > > pred <- ifelse(prob[, 2] >= 0.3, 1, 0) > > F. Use the confusionMatrix function in the caret package to output the > confusion matrix. > > > confMtr <- confusionMatrix(pred,unlist(InvestTechVal[, 3]),mode = > ?everything?, positive = ?1?) > > accuracy <- confMtr$overall[1] > > valError <- 1 ? accuracy > > confMtr > > G. Classify the 18 new (out-of-sample) readers using the following > code. > >...
2018 Mar 04
3
Random Seed Location
...es, 0=no)` ~ ., data = InvestTechTrain) >> prob <- predict(model, newdata = InvestTechVal, type = ?raw?) >> pred <- ifelse(prob[, 2] >= 0.3, 1, 0) > > F. Use the confusionMatrix function in the caret package to output the > confusion matrix. > >> confMtr <- confusionMatrix(pred,unlist(InvestTechVal[, 3]),mode = > ?everything?, positive = ?1?) >> accuracy <- confMtr$overall[1] >> valError <- 1 ? accuracy >> confMtr > > G. Classify the 18 new (out-of-sample) readers using the following > code. >&...
2018 Mar 04
0
Random Seed Location
...estTechTrain) > >> prob <- predict(model, newdata = InvestTechVal, type = ?raw?) > >> pred <- ifelse(prob[, 2] >= 0.3, 1, 0) > > > > F. Use the confusionMatrix function in the caret package to output the > > confusion matrix. > > > >> confMtr <- confusionMatrix(pred,unlist(InvestTechVal[, 3]),mode = > > ?everything?, positive = ?1?) > >> accuracy <- confMtr$overall[1] > >> valError <- 1 ? accuracy > >> confMtr > > > > G. Classify the 18 new (out-of-sample) readers using the foll...
2018 Mar 04
2
Random Seed Location
...gt; prob <- predict(model, newdata = InvestTechVal, type = ?raw?) >> >> pred <- ifelse(prob[, 2] >= 0.3, 1, 0) >> > >> > F. Use the confusionMatrix function in the caret package to output the >> > confusion matrix. >> > >> >> confMtr <- confusionMatrix(pred,unlist(InvestTechVal[, 3]),mode = >> > ?everything?, positive = ?1?) >> >> accuracy <- confMtr$overall[1] >> >> valError <- 1 ? accuracy >> >> confMtr >> > >> > G. Classify the 18 new (out-of-sample...
2018 Mar 04
0
Random Seed Location
...dict(model, newdata = InvestTechVal, type = ?raw?) >>>>> pred <- ifelse(prob[, 2] >= 0.3, 1, 0) >>>> >>>> F. Use the confusionMatrix function in the caret package to output the >>>> confusion matrix. >>>> >>>>> confMtr <- confusionMatrix(pred,unlist(InvestTechVal[, 3]),mode = >>>> ?everything?, positive = ?1?) >>>>> accuracy <- confMtr$overall[1] >>>>> valError <- 1 ? accuracy >>>>> confMtr >>>> >>>> G. Classify the 18...
2018 Mar 05
1
Random Seed Location
...;>> pred <- ifelse(prob[, 2] >= 0.3, 1, 0) >>>>> >>>>> >>>>> F. Use the confusionMatrix function in the caret package to output >>>>> the >>>>> confusion matrix. >>>>> >>>>>> confMtr <- confusionMatrix(pred,unlist(InvestTechVal[, 3]),mode = >>>>> >>>>> ?everything?, positive = ?1?) >>>>>> >>>>>> accuracy <- confMtr$overall[1] >>>>>> valError <- 1 ? accuracy >>>>>> conf...