Displaying 14 results from an estimated 14 matches for "cforest_unbiased".
2012 Sep 13
0
cforest and cforest_unbiased for testing and training datasets
...I am using cforest to predict age of fishes using several variables; as it
is rather difficult to age fishes I would like to show that a small subset
of fish (training dataset) can be aged, then using RF analysis, age can
accurately be predicted to the remaining individuals not in the subsample.
In cforest_unbiased the samples are drawn without replacement and so it
creates a default testing dataset (approx 35%) and training dataset from the
rest. My question is that if I have already separated my data into a testing
and training dataset prior to RF analysis is there a reason I should not set
the fraction opt...
2013 Feb 03
3
RandomForest, Party and Memory Management
...sing the Party and RandomForest packages. Any
comment is welcome and useful.
myparty <- cforest(SalePrice ~ ModelID+
ProductGroup+
ProductGroupDesc+MfgYear+saledate3+saleday+
salemonth,
data = trainRF,
control = cforest_unbiased(mtry = 3, ntree=300, trace=TRUE))
rf_model <- randomForest(SalePrice ~ ModelID+
ProductGroup+
ProductGroupDesc+MfgYear+saledate3+saleday+
salemonth,
data = trainRF,na.action = na.omit,
importance=TRUE, do...
2012 Dec 06
0
Package party Error in model.matrix.default(as.formula(f), data = blocks) :allocMatrix: too many elements specified
...ll. In total I have 20 features with 1100 observations. I checked the type my data in R using class(my_data_cell), no factor has been observed. I received a commond error like others did from the past.
> lu = read.csv(file=file.choose())
> lu.cf <- cforest(Target ~ ., data = lu, control = cforest_unbiased(mtry = 2, ntree = 50))
> lu.cf <- cforest(Target ~ ., data = lu, control = cforest_unbiased(mtry = 2, ntree = 100))
> cvi_lu = varimp(lu.cf,threshold = 0.2,conditional= TRUE,OOB=TRUE)
Error in model.matrix.default(as.formula(f), data = blocks) :
allocMatrix: too many elements specified...
2012 Apr 29
1
CForest Error Logical Subscript Too Long
...ead.csv("/Users/Abigail/Documents/OldData250412.csv")
OLDDATA$YD <- factor(OLDDATA$YD, label=c("Yes", "No"))?
OLDDATA$ND <- factor(OLDDATA$ND, label=c("Yes", "No"))?
attach(OLDDATA)
defaults <- cbind(YD, ND)
set.seed(47)
data.controls <- cforest_unbiased(ntree=500, mtry=3)
data.cforest <- cforest(defaults~LN+LV+LT+RV+MR+TL+DIA+CB, data = OLDDATA, controls=data.controls)
data.cforest.varimp <- varimp(data.cforest, conditional = TRUE)
barplot(sort(data.cforest.varimp))
And this is the error I get:
> data.cforest <- cforest(defaults~LN...
2011 Oct 14
1
Party package: varimp(..., conditional=TRUE) error: term 1 would require 9e+12 columns
...57486 Max.
:11.76877
> library(HH)
<output deleted>
> vif(y ~ ., data=df)
x1 x2 x3 x4 x5 x6 x7 x8
1.374583 1.252250 1.021672 1.218801 1.015124 1.439868 1.075546 1.060580
> library(party)
<output deleted>
> mycontrols <- cforest_unbiased(ntree=50, mtry=3) # Small forest
but requires a few minutes
> myforest <- cforest(y ~ ., data=df, controls=mycontrols)
> varimp(myforest)
x1 x2 x3 x4 x5 x6 x7
x8
11.924498 103.180195 16.228864 30.658946 5.053500 12.82...
2009 Feb 06
0
party package conditional variable importance
...guess it might be something to do with
the very large number of variables (e.g. 23 variables, 250 or so data
points) but I was wondering if anyone had any other ideas. It works
fine for regular variable importance calculation.
Code:
biomass.cf<-cforest(Total.biomass ~ .,
data=biomass, control=cforest_unbiased(ntree=2500, mtry=8))
biomass.cf.vi<-varimp(biomass.cf, conditional=TRUE)
Error:
Error in if (node[[5]][[1]] == variableID) cp <- node[[5]][[3]] :
argument is of length zero
In addition: Warning messages:
1: In matrix(as.logical(cl), nrow = nlevels(x)) :
data length [2] is not a sub-mult...
2010 Apr 30
0
ROC curve in randomForest
...*************
someguys use the following codes to plot, but I can not use the treeresponse
commad in randomforest object directly.
# create model using random forest and bagging ensemble using conditional
inference trees
035 x.cf <- cforest(Class ~ ., data=BreastCancer[ind == 1,], control =
cforest_unbiased(mtry = ncol(BreastCancer)-2))
036 x.cf.pred <- predict(x.cf, newdata=BreastCancer[ind == 2,])
037 x.cf.prob <- 1- unlist(treeresponse(x.cf, BreastCancer[ind == 2,]),
use.names=F)[seq(1,nrow(BreastCancer[ind == 2,])*2,2)]
038
--
Sincerely,
Changbin
--
Changbin Du
DOE Joint Ge...
2011 Jun 16
1
Fwd: varimp_in_party_package
>
> Hello everyone,
>
> I use the following command lines to get important variable from training
> dataset.
>
>
> data.controls <- cforest_unbiased(ntree=500, mtry=3)
> data.cforest <- cforest(V1~.,data=rawinput,controls=data.controls)
> data.cforest.varimp <- varimp(data.cforest, conditional = TRUE)
>
> I got error: "Error in model.matrix.default(as.formula(f),data = blocks):
> term 1 would require 4e+17 columns&quo...
2011 Jul 18
0
cforest - keep.forest = false option?
...randomForest and that solved my space
issue. Is there a similar option for cforest (besides savesplitstats =
FALSE, which isn't helping)
below is my code and error message
Thanks in advance!
> fit <- cforest(formula = y ~ x1 + x2+ x3+ x4+ x5+
+ x6+ x7+ x8+ x9+ x10, data=data, control= cforest_unbiased(savesplitstats =
FALSE, ntree = 50, mtry = 5)
1: In mf$data <- data :
Reached total allocation of 3955Mb: see help(memory.size)
2: In mf$data <- data :
Reached total allocation of 3955Mb: see help(memory.size)
--
View this message in context: http://r.789695.n4.nabble.com/cforest-keep-...
2011 Jul 20
0
cforest - keep.forest = false option? (fwd)
...igned as a flexible research tool and is
not optimized wrt speed or memory consumption.
Best,
Torsten
>
> below is my code and error message
>
> Thanks in advance!
>
>> fit <- cforest(formula = y ~ x1 + x2+ x3+ x4+ x5+
> + x6+ x7+ x8+ x9+ x10, data=data, control=
> cforest_unbiased(savesplitstats =
> FALSE, ntree = 50, mtry = 5)
>
> 1: In mf$data <- data :
> Reached total allocation of 3955Mb: see help(memory.size)
> 2: In mf$data <- data :
> Reached total allocation of 3955Mb: see help(memory.size)
>
>
> --
> View this message in context...
2012 Dec 07
0
Conditional inference forest error: levels in factors do not match
#Conditional inference forest ("Party" package) error message states
that levels in factors of new data do not match original data, but they
do...
#create conditional inference forest
oc_listed.fit1 <- cforest(Listed~
HabMode,controls=cforest_unbiased(ntree=500), data=oc.complete)
#use predict function for subset of data
#this works correctly
predict(oc_listed.fit1,newdata=oc.complete[1:10,])
#use predict on new set of data
predict(oc_listed.fit1,newdata=DD_NOT)
#produces this error message
#Error in checkData(oldData, RET) :
#Levels in fa...
2013 Jan 11
0
Error with looping through a list of strings as variables
...; error will be seen which is simply due to the
small substitute data set and of no concern.
rm(list=ls())
library(party)
library(reshape)
puthere <- c("TEST_RESULTS.csv")
hsb2 <- read.csv("http://www.ats.ucla.edu/stat/data/hsb2.csv")
names(hsb2)
set.seed(8296)
ctrl <- cforest_unbiased(ntree=500, mtry=2)
varlist <- names(hsb2)[3:4]
for (h in varlist){
for (k in c(1,0)){
for (i in c(1,2)){ ## Data subset
filtered <- subset(hsb2,
schtyp == i
& female == k,
select = c(id:socst))
rank.cf <- cforest(h ~ write + math + science + socst,
data = filtered,
control = ctrl)
p...
2012 Oct 11
0
Error with cForest
...would append/write sequential results as a new column in the file as opposed to being in list form?
Your comments are appreciated
-- Jay
Script in question:
> library(party)
> rm(list=ls())
> Dynamic <- read.csv(file="Dynamic_DATA.csv")
> set.seed(1851)
> ctrl <- cforest_unbiased(ntree=500, mtry=5)
>
> for (i in 1:4){ ## Climate subset
+ occupied <- subset(Dynamic, WDOccupancy == 1 & Climate == i, select = c(DataSet:DGI))
+ Dynamic.cf <- cforest(Fan ~ FormH + FormV + Uratio + Void + Transmis, data = occupied, control = ctrl)
+ print(Dynamic.cf)
+ ## round(va...
2011 Oct 17
0
Party package: varimp(..., conditional=TRUE) error: term 1 would require 9e+12 columns (fwd)
...library(HH)
> <output deleted>
>> vif(y ~ ., data=df)
> x1 x2 x3 x4 x5 x6 x7 x8
> 1.374583 1.252250 1.021672 1.218801 1.015124 1.439868 1.075546 1.060580
>> library(party)
> <output deleted>
>> mycontrols <- cforest_unbiased(ntree=50, mtry=3) # Small
>> forest
> but requires a few minutes
>> myforest <- cforest(y ~ ., data=df, controls=mycontrols)
>> varimp(myforest)
> x1 x2 x3 x4 x5 x6
> x7
> x8
> 11.924498 103.180195 16.22...