Displaying 7 results from an estimated 7 matches for "buddyinfo".
2016 Mar 11
0
[PATCH v1 19/19] zram: use __GFP_MOVABLE for memory allocation
...t scenario is as follows.
KVM guest, 1G memory, ext4 formated zram block device,
for i in `seq 1 8`;
do
dd if=/dev/vda1 of=mnt/test$i.txt bs=128M count=1 &
done
wait `pidof dd`
for i in `seq 1 2 8`;
do
rm -rf mnt/test$i.txt
done
fstrim -v mnt
echo "init"
cat /proc/buddyinfo
echo "compaction"
echo 1 > /proc/sys/vm/compact_memory
cat /proc/buddyinfo
old:
init
Node 0, zone DMA 208 120 51 41 11 0 0 0 0 0 0
Node 0, zone DMA32 16380 13777 9184 3805 789 54 3 0 0 0 0...
2016 Mar 11
31
[PATCH v1 00/19] Support non-lru page migration
Recently, I got many reports about perfermance degradation
in embedded system(Android mobile phone, webOS TV and so on)
and failed to fork easily.
The problem was fragmentation caused by zram and GPU driver
pages. Their pages cannot be migrated so compaction cannot
work well, either so reclaimer ends up shrinking all of working
set pages. It made system very slow and even to fail to fork
easily.
2016 Mar 11
31
[PATCH v1 00/19] Support non-lru page migration
Recently, I got many reports about perfermance degradation
in embedded system(Android mobile phone, webOS TV and so on)
and failed to fork easily.
The problem was fragmentation caused by zram and GPU driver
pages. Their pages cannot be migrated so compaction cannot
work well, either so reclaimer ends up shrinking all of working
set pages. It made system very slow and even to fail to fork
easily.
2016 Mar 21
22
[PATCH v2 00/18] Support non-lru page migration
Recently, I got many reports about perfermance degradation
in embedded system(Android mobile phone, webOS TV and so on)
and failed to fork easily.
The problem was fragmentation caused by zram and GPU driver
pages. Their pages cannot be migrated so compaction cannot
work well, either so reclaimer ends up shrinking all of working
set pages. It made system very slow and even to fail to fork
easily.
2016 Mar 21
22
[PATCH v2 00/18] Support non-lru page migration
Recently, I got many reports about perfermance degradation
in embedded system(Android mobile phone, webOS TV and so on)
and failed to fork easily.
The problem was fragmentation caused by zram and GPU driver
pages. Their pages cannot be migrated so compaction cannot
work well, either so reclaimer ends up shrinking all of working
set pages. It made system very slow and even to fail to fork
easily.
2016 Mar 30
33
[PATCH v3 00/16] Support non-lru page migration
Recently, I got many reports about perfermance degradation
in embedded system(Android mobile phone, webOS TV and so on)
and failed to fork easily.
The problem was fragmentation caused by zram and GPU driver
pages. Their pages cannot be migrated so compaction cannot
work well, either so reclaimer ends up shrinking all of working
set pages. It made system very slow and even to fail to fork
easily.
2016 Mar 30
33
[PATCH v3 00/16] Support non-lru page migration
Recently, I got many reports about perfermance degradation
in embedded system(Android mobile phone, webOS TV and so on)
and failed to fork easily.
The problem was fragmentation caused by zram and GPU driver
pages. Their pages cannot be migrated so compaction cannot
work well, either so reclaimer ends up shrinking all of working
set pages. It made system very slow and even to fail to fork
easily.