Displaying 3 results from an estimated 3 matches for "blll".
Did you mean:
bill
2007 Aug 23
0
weighted nls and confidence intervals
...luconf1 <- yfit1 + outer(se.fit1, qnorm(c(probex, 1 - probex)))
se.fit2 <- sqrt(apply(rr2$m$gradient(), 1, function(x) sum(vcov(rr2)*outer(x,x))))
luconf2 <- yfit2 + outer(se.fit2, qnorm(c(probex, 1 - probex)))
op <- par(mfrow = c(2,1))
matplot(x, cbind(y, yfit1,luconf1), type = 'blll', pch = 1, col = c(1,2,4,4), lty = 1)
matplot(x, cbind(y, yfit2,luconf2), type = 'blll', pch = 1, col = c(1,2,4,4), lty = 1)
par(op, no.readonly = T)
#-----------------------------------------------------------------------------------
the second fit uses unequal weights where the last...
2007 Aug 31
0
non-linear fitting (nls) and confidence limits
...luconf1 <- yfit1 + outer(se.fit1, qnorm(c(probex, 1 - probex)))
se.fit2 <- sqrt(apply(rr2$m$gradient(), 1, function(x) sum(vcov(rr2)*outer(x,x))))
luconf2 <- yfit2 + outer(se.fit2, qnorm(c(probex, 1 - probex)))
op <- par(mfrow = c(2,1))
matplot(x, cbind(y, yfit1,luconf1), type = 'blll', pch = 1, col = c(1,2,4,4), lty = 1)
matplot(x, cbind(y, yfit2,luconf2), type = 'blll', pch = 1, col = c(1,2,4,4), lty = 1)
par(op, no.readonly = T)
#-----------------------------------------------------------------------------------
the second fit uses unequal weights where the last...
2007 Sep 25
0
non-linear fitting (nls) and confidence limits
...uconf1 <- yfit1 + outer(se.fit1, qnorm(c(probex, 1 - probex)))
se.fit2 <- sqrt(apply(res2$m$gradient(), 1, function(x) sum(vcov(res2)*outer(x,x))))
luconf2 <- yfit2 + outer(se.fit2, qnorm(c(probex, 1 - probex)))
op <- par(mfrow = c(2,1))
matplot(x, cbind(y, yfit1,luconf1), type = 'blll', pch = 1, col = c(1,2,4,4), lty = 1)
matplot(x, cbind(y, yfit2,luconf2), type = 'blll', pch = 1, col = c(1,2,4,4), lty = 1)
par(op, no.readonly = T)
#-----------------------------------------------------------------------------------
the first fit uses unit weights for all data points...