Displaying 9 results from an estimated 9 matches for "binv".
Did you mean:
bind
2017 Jun 05
2
Backend implementation for an architecture with only majority operation instruction
...So the processor does in-memory computing, it reads instructions and
operands from the memory array, performs the majority operations within the
memory array itself.
It does instructions using resistive majority which is AB'+B'C+AC
Like it does AND operation as
1: 0, 1, @C; //C=0
2: 0, 1, @Binv; //Binv=0
3: 1, @B, @Binv; //Binv=B
4: @A, @Binv, @C; //C=A.B
where each operation is a resistive majority and operations are directly
performed on the storage of C. It reads @A in a register , @B , reads A
and B and directly writes into the memory @C. There are shift operators as
well that are a...
2009 Dec 09
4
binary string conversion to a vector (PR#14120)
...: Franc Brglez
Version: R 2.9.1 GUI 1.28 Tiger build 32-bit (5444)
OS: MacOSX -- 10.6.2
Submission from: (NULL) (24.148.163.114)
I am demonstrating what may be a bug or my lack of experience. Please review as
it would help to hear from someone.
MANY THANKS -- Franc Brglez
The function "binS2binV" returns what I consider a wrong value -- see the
terminal output
binS2binV = function(string="0001101", sep="")
# this procedure is expected to convert a binary string to a binary vector ...
# but does it?? Why do we get a vector with quoted binary values??
{
qlis...
2005 Nov 03
0
problems with pan(): Indizierung ausserhalb der Grenzen = subscript out of bounds
...tercept (at first)
> dim(pred)
[1] 940 1
xcol <- 1:dim(pred)[2]
> xcol
[1] 1
#xcol = 1 , using all number of cols of pred[]
> zcol <- c(1) # = 1 , number of cols to use
> y.ncol <- dim(y)[2]
> n.zcol <- length(zcol)
> prior <- list(a=y.ncol,
+ Binv=diag(y.ncol),
+ c=n.zcol,
+ Dinv=diag(n.zcol))
> prior
$a
[1] 15
$Binv
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]
[,13] [,14] [,15]
[1,] 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0
[2,] 0 1 0...
2017 Jun 02
5
Backend implementation for an architecture with only majority operation instruction
Hello everyone,
I was trying to create an LLVM backend for a processor with a very simple architecture and that does all instructions like load, store, arithmetic and logical instructions using a bunch of majority functions. The processor has only one instruction(majority function) in its ISA and breaks down all other instructions into a number of majority instructions depending on what
2005 May 26
1
PAN: Need Help for Multiple Imputation Package
...pants dropped
out at end.
> sim <- read.xport('c:\\xptds.dat')
>
> int <- rep(1,1200)
> y <- cbind(sim$MIY1,sim$TCOV1)
> subj <- sim$ID
> pred <- cbind(int, sim$TIME, sim$GROUP)
>
> xcol <- 1:3
> zcol <- 1
> prior <- list(a=2,Binv=4,c=2,Dinv=4)
> result <-
pan(y,subj,pred,xcol,zcol,prior,seed=13579,iter=1000)
Error: subscript out of bounds
By the way, I also received the same error message
when I tried to include intercept and time in Zcol, a
matrix for random effect specification. I used
command “ zcol <- 1:2”....
2017 Jun 19
0
quantreg::rq.fit.hogg crashing at random
...rior point method; if "fn" then roughly matches with
method.cqr="ip"
# Create the covariance matrix of X
Sigma=matrix(NA,p,p); for(i in 1:p) for(j in 1:p) Sigma[i,j]=0.5^(abs(i-j))
# Generate X (common across all simulations)
set.seed(0); X=mvrnorm(n=n,mu=rep(0,p),Sigma=Sigma)
Binvlist=list()
for(k in 1:K){
tau=cumsum(rep(1/(k+1),k))
Ai=matrix(rep(tau,k),nrow=k,ncol=k,byrow=TRUE)
Aj=matrix(rep(tau,k),nrow=k,ncol=k,byrow=FALSE)
Amin=pmin(Ai,Aj) # Amin=Ai; Amin[Ai>Aj]=Aj[Ai>Aj]
Ax=tau %*% t(tau)
B=Amin-Ax
Binvlist[[k]]=solve(B)
}
for(m in 1:M){
mse_wqr_list=mse_c...
2005 Aug 31
0
Imputation using Pan in R
...9,9,9,
+ 10,10,10,10)
> pred <- cbind(int=rep(1,40),
+ dummy1=rep(c(1,0,0,0),10),
+ dummy2=rep(c(0,1,0,0),10),
+ dummy3=rep(c(0,0,1,0),10),
+ dummy4=rep(c(0,2,4,6),10))
> xcol <- 1:4
> zcol <- c(1,5)
> a <- array (2,dim=c(2,2))
> prior <- list(a=1,Binv=1,c=2,Dinv=a)
> result <- pan(y,subj,pred,xcol,zcol,prior,seed=25679,iter=5000)
> result$y
[1] 5 8 NaN 10 2 NaN NaN NaN 10 10 8 NaN NaN 10 4 NaN 2 8
NaN
[20] 9 NaN NaN NaN NaN 8 6 NaN 5 6 NaN NaN NaN 10 2 NaN NaN 6
8
[39] NaN 2
>
[[alternative HT...
2007 Sep 24
0
longitudinal imputation with PAN
...;Boys","Girls"))
impht.data$visit <- factor (impht.data$visit)
impht.data$code <- factor (impht.data$code)
y <- impht.data$htmiss
subj <- impht.data$code
pred <- cbind (impht.data$age, impht.data$sex, impht.data$visit)
xcol <- 1:3
zcol <- 1
prior <- list(a=1, Binv=1, c=1, Dinv=1)
ht1 <- pan(y, subj, pred, xcol, zcol, prior, seed=13579, iter=1000)
code sex visit age ht htmiss
1 2 1 4.87 105 105
1 2 2 5.86 109.6
1 2 3 6.88 116.4 116.4
1 2 4 7.72 121....
2011 Jun 21
0
R crash when using pan for multiple imputation
... #col with fixed effect in pred
zcol <- 1 #col with random effect in pred
prior <- list( a=ncol(y), #non-informative prior
Binv= diag( rep(1,ncol(y) ) ) ,
c= ncol(y) * length(zcol) ,
Dinv= diag( rep(1 ,ncol(y)*length(zcol) ) )
)
imput1 <- pan(y,subj,pred,xcol,zcol,prior,seed= 13579 ,iter= 1000) #run first imputation
...after 30 mi...