Displaying 20 results from an estimated 41 matches for "beta_1".
Did you mean:
beta1
2006 Sep 18
1
non linear modelling with nls: starting values
Hi,
I'm trying to fit the following model to data using 'nls':
y = alpha_1 * beta_1 * exp(-beta_1 * x) +
alpha_2 * beta_2 * exp(-beta_2 * x)
and the call I've been using is:
nls(y ~ alpha_1 * beta_1 * exp(-beta_1 * x) +
alpha_2 * beta_2 * exp(-beta_2 * x),
start=list(alpha_1=4, alpha_2=2, beta_1=3.5, beta_2=2.5),
trace=TRUE, control=nls.control(maxiter...
2011 Aug 19
3
Calculating p-value for 1-tailed test in a linear model
Hello,
I'm having trouble figuring out how to calculate a p-value for a 1-tailed
test of beta_1 in a linear model fit using command lm. My model has only 1
continuous, predictor variable. I want to test the null hypothesis beta_1
is >= 0. I can calculate the p-value for a 2-tailed test using the code
"2*pt(-abs(t-value), df=degrees.freedom)", where t-value and degrees.freedom...
2006 Oct 31
2
Put a normal curve on plot
...a.
library(MASS)
mu <- c(0,1)
Sigma <- matrix(c(1,.8,.8,1), ncol=2)
set.seed(123)
x <- mvrnorm(50,mu,Sigma)
plot(x)
abline(lm(x[,2] ~ x[,1]))
Say I want to add a normal distribution surrounding the predicted values
at the x-values of -1, 0, and 1. That is, at the points
\hat{y} = \mu + \beta_1(-1)
\hat{y} = \mu + \beta_1(0)
\hat{y} = \mu + \beta_1(1)
How might I go about doing this?
Harold
> version
_
platform i386-pc-mingw32
arch i386
os mingw32
system...
2009 Jun 16
1
turning off escape sequences for a string
Hello,
I would like to create a matrix with one of the columns named
$\delta$. I have also created columns $\beta_1$ , $\beta_2$, etc.
However, it seems like \d is an escape sequence which gets
automatically removed. (Using these names such that they work right in
xtable -> latex)
colnames(simpleReg.mat) <- c("$\beta_1$","$SE(\beta_1)$", "$\beta_2$",
"$SE(\beta_2)$"...
2005 Dec 01
2
Minimizing a Function with three Parameters
Hi,
I'm trying to get maximum likelihood estimates of \alpha, \beta_0 and
\beta_1, this can be achieved by solving the following three equations:
n / \alpha + \sum\limits_{i=1}^{n} ln(\psihat(i)) -
\sum\limits_{i=1}^{n} ( ln(x_i + \psihat(i)) ) = 0
\alpha \sum\limits_{i=1}^{n} 1/(psihat(i)) - (\alpha+1)
\sum\limits_{i=1}^{n} ( 1 / (x_i + \psihat(i)) ) = 0
\alpha \sum\limits...
2011 Nov 20
1
alpha_1 + beta_1 >1 in GARCH(1,1)
Hi,
as i suppose to know in a stationary GARCH(1,1) model the sum of alpha and
beta has to be smaller than 1.
But if i use the garchfit() function from the package fGarch for my
timeseries the sum is bigger than 1.
The adf.test tells me a p-value smaller than 0.01 instead.
What does this mean for me?
Can i trust in the coefficients in this case?
mfg user84
--
View this message in context:
2005 Nov 24
1
residuals in logistic regression model
In the logistic regression model, there is no residual
log (pi/(1-pi)) = beta_0 + beta_1*X_1 + .....
But glm model will return
residuals
What is that?
How to understand this? Can we put some residual in the logistic regression
model by replacing pi with pi' (the estimated pi)?
log (pi'/(1-pi')) = beta_0 + beta_1*X_1 + .....+ ei
Thanks!
[[alternative HTML version de...
2012 Feb 21
0
BHHH algorithm on duration time models for stock prices
...es run well but i don't get the results. I get the following message:
BHHH maximisation
Number of iterations: 0
Return code: 100
Initial value out of range.
I don't know this is so because of the way i have written my loglikelihood or what.
The loglikelihood
LogLik<-function(param){
beta_1<-param[1]
beta_2<-param[2]
beta_3<-param[3]
beta_4<-param[4]
lambda.plus<-beta_1*Iplusless1 + beta_2*Iminusless1
lambda.minus<-beta_3*Iplusless1 + beta_4*Iminusless1
sum(Iplus_new*log(lambda.plus))-sum(log(lambda.plus)*x_new) +
sum(Iminus_new*log(lambda.minus))-sum(log(lambda.mi...
2007 Sep 13
1
Problem using xtable on an array
...[1:18, 1:4] -0.170 -0.304 -2.617 2.025 -1.610 ...
- attr(*, "dimnames")=List of 2
..$ : chr [1:18] "Amount: CP for VF" "Amount: CP for F" "Amount: CP for
M" "Amount: RD for VF" ...
..$ : chr [1:4] "beta_0" "P-value" "beta_1" "P-value"
It contains the following:
> model.mat[1:2,]
beta_0 P-value beta_1 P-value
Amount: CP for VF -0.1702877 0.7716153 0.5148616 2.020602e-03
Amount: CP for F -0.3042522 0.1966133 0.8795982 6.058299e-12
That's fine. Now to produce...
2008 May 16
1
SE of difference in fitted probabilities from logistic model.
...max) - p.hat(x.mean) using
predict()
(with type="response"). And I can get the standard error for p.hat
(x.max) and
p.hat(x.mean) by specifiying se.fit=TRUE. No problem there.
But how can I get a handle on the standard error of the difference?
In a linear model this would just be SE(beta_1.hat)*(x.max-x.mean)
(where
beta_1.hat is specific to the particular level of `a' being considered).
If I am not mistaken. (Please correct me if I am!)
But in the logistic model, everything is entangled in the inverse link
function (the ``expit'' function as it is called by some), an...
2015 Jun 10
2
Duda glmer
Hola,
Tengo una base de datos con estructura jerárquica en la que quiero
clasificar observaciones en distintas categorías.
En el caso más simple, tengo una variable con dos categorías (variable
Y1) y dentro de cada una de ellas hay otras dos categorías (variable
Y2). Además tengo una variable explicativa cuantitativa discreta X.
El banco de datos sería de este tipo:
X Y1 Y2
5 0 1
9 0 0
2
2013 Oct 19
2
ivreg with fixed effect in R?
I want to estimate the following fixed effect model:
y_i,t = alpha_i + beta_1 x1_t + beta_2 x2_i,tx2_i,t = gamma_i + gamma_1
x1_t + gamma_2 Z1_i + gamma_3 Z2_i
I can use ivreg from AER to do the iv regression.
fm <- ivreg(y_i,t ~ x1_t + x2_i,t | x1_t + Z1_i + Z2_i,
data = DataSet)
But, I'm not sure how can I add the fixed effects.
Thanks!
[[...
2002 Dec 04
1
use of offset - clarification
Hi Listers,
seems I have forgotten some basics re offset in glm:
data:
counts (y) from locations off different size (area),
explanatory variable: x
Model:
y ~ x+offset(area)
Predictions (pred) using Poisson errors
plot(x,y) and points(x,pred) gives neat "line" of estimated values.
However, for ease of understanding graphs are better using plot(x,y/area).
Question:
How to display
2018 Feb 16
2
[FORGED] Re: SE for all levels (including reference) of a factor atfer a GLM
...gless! (The usual jargon is to say that they are "not estimable",
but "meaningless" is a more accurate description.)
In order to ascribe unique values to the parameters, one must apply a
"constraint". With the "treatment contrasts" the constraint is that
beta_1 = 0.
As a result the mean for the first treatment is mu, that for the second
treatment is mu + beta_2, and so on.
Consequently the SE corresponding to "(Intercept)" is the SE of
estimated mean for treatment 1. The SE corresponding to beta_2 is the
SE of the estimated *difference* bet...
2010 Apr 30
0
ggplot2 legend how?
...boot[,e,p,2])
g1 <- ggplot(data, aes(x, y))
g1 + geom_errorbar(classiclimits, colour = "red") + geom_errorbar(ownlimits, colour = "green") + geom_errorbar(rbootlimits, colour = "blue") + geom_hline(yintercept = betas[p]) + xlab("Simulation") + ylab("beta_1") + opts(title = "CI for error 'normal' and beta_1") + opts(legend.position = c(10,2.5))
Many thanks in advance,
Best regards,
Giovanni
[[alternative HTML version deleted]]
2012 Oct 04
1
(no subject)
producing a multi-figure plot, i am try to add beta_1, beta_2,.. beta_9 to
ylab using expression or substitution, but cannot work out like
for (i in 1:9){
plot(seq(1/m, 1-1/m, 1/m), beta.q[,i], type="l", col=1,
ylim=range(beta.q),
xlab="quantile", ylab=expresion(beta[i]))
}
any suggestions will be greatly appreciated.
D...
2018 Feb 16
0
[FORGED] Re: SE for all levels (including reference) of a factor atfer a GLM
...hort answer to the original question:
> On 16 Feb 2018, at 05:02 , Rolf Turner <r.turner at auckland.ac.nz> wrote:
>
> In order to ascribe unique values to the parameters, one must apply a "constraint". With the "treatment contrasts" the constraint is that
> beta_1 = 0.
...and consequently, being a constant, has an s.e. of 0.
--
Peter Dalgaard, Professor,
Center for Statistics, Copenhagen Business School
Solbjerg Plads 3, 2000 Frederiksberg, Denmark
Phone: (+45)38153501
Office: A 4.23
Email: pd.mes at cbs.dk Priv: PDalgd at gmail.com
2013 Feb 04
10
duda con lmer. Añadir predictor a nivel de grupos
Hola a todos.
Estoy utilizando la función lmer del paquete lme4 para ajustar un modelo
mixto.
Tengo varias variables en mi data.frame, unas son a nivel individual y
otras a nivel de comarcas. Listo algunas.
ingre_6 : Ingresos (nivel individual)
iscs_a : un indicador sintético resumen de otras variables, calculado
mediante componentes principales.
sau_com : superficie agraria útil de cada una
2007 Sep 17
1
Possible fixed point overflow/div 0 preprocess.c
...n', I received a floating
point exception
even when compiled with -DFIXED_POINT. The reason is as follows:
<original beta calculation within speex_preprocess_run>
...
st->nb_adapt++;
st->min_count++;
beta = MAX16(QCONST16(.03,15),DIV32_16(Q15_ONE,st->nb_adapt));
beta_1 = Q15_ONE-beta;
...
</>
On my architecture(x86) at least the DIV32_16 is defined as follows.
typedef short spx_int16_t;
typedef spx_int16_t spx_word16_t;
#define DIV32_16(a,b)
((spx_word16_t)(((spx_word32_t)(a))/((spx_word16_t)(b))))
The nb_adapt overflow occurred when its value reached 0x...
2012 Oct 27
0
[gam] [mgcv] Question in integrating a eiker-white "sandwich" VCV estimator into GAM
...including a "fixed effect" in the
econometrics sense of the term -- an individual-specific intercept. I
also want to model the continuous variables flexibly -- I have no good
priors on the proper specification for the function form. The model is
the following:
y_{it} = \alpha_i + \beta_1(T_{it}) + f(continuous.vars_{it}) + e_{it}
To control for unobserved time-invariant heterogeneity, I want to
de-mean the data as follows:
y_{it}-\bar{y_i} = \beta_1(T_{it}-\bar{T_i}) +
f(continuous.vars_{it}-\bar{continuous.vars_i}) + e_{it} - \bar{e}_i
Fitting the demeaned model should give m...