Displaying 4 results from an estimated 4 matches for "beta1x1".
Did you mean:
beta11
2023 Aug 19
1
Determining Starting Values for Model Parameters in Nonlinear Regression
..., 1, 1, 3, 2,
3, 3, 0, 2), y = c(1.4287, 1.4426, 1.4677, 1.4774, 1.4565,
1.4807, 1.4279, 1.4684, 1.4301, 1.4188, 1.4157, 1.4686, 1.4414,
1.4172, 1.4829, 1.4291, 1.4438, 1.4068, 1.4524, 1.4183)), row.names =
c(NA,
-20L), class = "data.frame")
The model is the following:
y = 1/(Beta1x1 + Beta2x2 + Beta3x3)
I need to determine starting (initial) values for the model parameters for
this nonlinear regression model, any ideas on how to accomplish this using
R?
Cheers,
Paul
[[alternative HTML version deleted]]
2023 Aug 19
1
Determining Starting Values for Model Parameters in Nonlinear Regression
...> > 1.4807, 1.4279, 1.4684, 1.4301, 1.4188, 1.4157, 1.4686, 1.4414,
> > 1.4172, 1.4829, 1.4291, 1.4438, 1.4068, 1.4524, 1.4183)), row.names
> =
> > c(NA,
> > -20L), class = "data.frame")
> >
> > The model is the following:
> > y = 1/(Beta1x1 + Beta2x2 + Beta3x3)
> >
> > I need to determine starting (initial) values for the model parameters
> for
> > this nonlinear regression model, any ideas on how to accomplish this
> using
> > R?
> >
> > Cheers,
> > Paul
> >
> > [[alte...
2023 Aug 20
1
Determining Starting Values for Model Parameters in Nonlinear Regression
....4279, 1.4684, 1.4301, 1.4188, 1.4157, 1.4686, 1.4414,
> >? ? ? 1.4172, 1.4829, 1.4291, 1.4438, 1.4068, 1.4524, 1.4183)), row.names =
> > c(NA,
> > -20L), class = "data.frame")
> >
> > The model is the following:
> > y = 1/(Beta1x1 + Beta2x2 + Beta3x3)
> >
> > I need to determine starting (initial) values for the model parameters for
> > this nonlinear regression model, any ideas on how to accomplish this using
> > R?
> >
> > Cheers,
> > Paul
>...
2001 Dec 21
1
pure statistical question
Dear all,
This is a pure statistical question, not necessarly related to R.
I could not find it in literature.
Suppose I'm intersted in a parameter rho, say, equal to:
r=beta1/beta2,
where beta1 and beta2 come from a linear model y=beta0+beta1X1+beta2X2+....
Fitting the model I can get the (biased) estimate of r=b1/b2, where b1 and
b2 are the estimates in the regression model; I can get the unbiased
estimate of rho as well as its SE using the delta method.
I'm interested in confidence interval for r.
A simple method could be (I suppose...