Displaying 1 result from an estimated 1 matches for "alpha_3".
Did you mean:
alpha3
2004 Aug 23
1
Two factor ANOVA with lm()
...form
\[\alpha_1=\beta_1=(\alpha\beta)_{11}=
(\alpha\beta)_{12}=(\alpha\beta)_{12}=(\alpha\beta)_{31}=0\]
in the model $E[Y_{jkl}]=\mu+\alpha_j+\beta_k+(\alpha\beta)_{jk}$
$j=1,2,3$, $k=1,2$, $l=1,2$, Dobson, page 102.
My question is: how can I incorporate restrictions like
$\alpha_1+\alpha_2+\alpha_3=0$, $\beta_1+\beta_2=0$,
$(\alpha\beta)_{21}+\alpha\beta)_{22}=0$,
$(\alpha\beta)_{31}+(\alpha\beta)_{32}=0$ and
$(\alpha\beta)_{11}+(\alpha\beta)_{21}+(\alpha\beta)_{31}=0$ from the
outset? Or put another way: Why is it that lm() uses the corner point
constraints by default? Where can I find a...