search for: allow_dup

Displaying 8 results from an estimated 8 matches for "allow_dup".

Did you mean: allow_dupes
2024 Dec 11
1
Cores hang when calling mcapply
...t; "column1" = string(), > "column2" = string() > ) > ) |> > collect() > ) > > # Step B: Clean names once > # Assume `crewjanitormakeclean` essentially standardizes column names > dt[, column1 := janitor::make_clean_names(column1, allow_dupes = > TRUE)] > dt[, column2 := janitor::make_clean_names(column2, allow_dupes = > TRUE)] > > # Step C: Create presence/absence indicators using data.table > # Use dcast to pivot wide. Set n=1 for presence, 0 for absence. > # For large unique values, consider chunking if n...
2024 Dec 11
1
Cores hang when calling mcapply
...gt; "column1" = string(), > "column2" = string() > ) > ) |> > collect() > ) > > # Step B: Clean names once > # Assume `crewjanitormakeclean` essentially standardizes column names > dt[, column1 := janitor::make_clean_names(column1, allow_dupes = > TRUE)] > dt[, column2 := janitor::make_clean_names(column2, allow_dupes = > TRUE)] > > # Step C: Create presence/absence indicators using data.table > # Use dcast to pivot wide. Set n=1 for presence, 0 for absence. > # For large unique values, consider chunking if need...
2024 Dec 11
1
Cores hang when calling mcapply
...???? "column2" = string() > >??? ) > >? ) |> > > >??? collect() > > ) > > > > # Step B: Clean names once > > # Assume `crewjanitormakeclean` essentially standardizes column names > > dt[, column1 := janitor::make_clean_names(column1, allow_dupes =? > > > TRUE)] > > dt[, column2 := janitor::make_clean_names(column2, allow_dupes = > > >? TRUE)] > > > > # Step C: Create presence/absence indicators using data.table > > # Use dcast to pivot wide. Set n=1 for presence, 0 for absence. > > # Fo...
2024 Dec 11
2
Cores hang when calling mcapply
...rings contained within them, as an example, one set has ~29k unique values and the other with ~15k unique values (no overlap across the two). Using a combination of custom functions: crewjanitormakeclean <- function(df,columns) { df <- df |> mutate(across(columns, ~make_clean_names(., allow_dupes = TRUE))) return(df) } mass_pivot_wider <- function(df,column,prefix) { df <- df |> distinct() |> mutate(n = 1) |> pivot_wider(names_from = glue("{column}"), values_from = n, names_prefix = prefix, values_fill = list(n = 0)) return(df) } sum_group_function <- f...
2024 Dec 11
1
Cores hang when calling mcapply
...gt; "column1" = string(), > "column2" = string() > ) > ) |> > collect() > ) > > # Step B: Clean names once > # Assume `crewjanitormakeclean` essentially standardizes column names > dt[, column1 := janitor::make_clean_names(column1, allow_dupes = > TRUE)] > dt[, column2 := janitor::make_clean_names(column2, allow_dupes = > TRUE)] > > # Step C: Create presence/absence indicators using data.table > # Use dcast to pivot wide. Set n=1 for presence, 0 for absence. > # For large unique values, consider chunking if need...
2024 Dec 11
1
Cores hang when calling mcapply
...>??? ) > > >? ) |> > > > > >??? collect() > > > ) > > > > > > # Step B: Clean names once > > > # Assume `crewjanitormakeclean` essentially standardizes column names > > > dt[, column1 := janitor::make_clean_names(column1, allow_dupes =? > > > > > TRUE)] > > > dt[, column2 := janitor::make_clean_names(column2, allow_dupes = > > > > >? TRUE)] > > > > > > # Step C: Create presence/absence indicators using data.table > > > # Use dcast to pivot wide. Set n=1 for...
2024 Dec 12
1
Cores hang when calling mcapply
...gt; "column1" = string(), > "column2" = string() > ) > ) |> > collect() > ) > > # Step B: Clean names once > # Assume `crewjanitormakeclean` essentially standardizes column names > dt[, column1 := janitor::make_clean_names(column1, allow_dupes = > TRUE)] > dt[, column2 := janitor::make_clean_names(column2, allow_dupes = > TRUE)] > > # Step C: Create presence/absence indicators using data.table > # Use dcast to pivot wide. Set n=1 for presence, 0 for absence. > # For large unique values, consider chunking if need...
2024 Dec 12
1
Cores hang when calling mcapply
...> > > > > > >??? collect() > > > > ) > > > > > > > > # Step B: Clean names once > > > > # Assume `crewjanitormakeclean` essentially standardizes column names > > > > dt[, column1 := janitor::make_clean_names(column1, allow_dupes =? > > > > > > > TRUE)] > > > > dt[, column2 := janitor::make_clean_names(column2, allow_dupes = > > > > > > >? TRUE)] > > > > > > > > # Step C: Create presence/absence indicators using data.table > > > &gt...