Displaying 10 results from an estimated 10 matches for "allignol".
Did you mean:
alignof
2008 Jun 17
1
A new task view on survival analysis
Dear all,
A new task view on survival analysis
is now online.
It attempts to deal with all the R-packages
that permit to analyze time-to-event data.
Any comments or suggestions to improve
the task view are very welcome.
Best regards,
Arthur Allignol
Freiburg Center for Data Analysis and Modeling,
Freiburg University, Germany
2013 Oct 04
3
Survival
Hola Carlos.
Muchas gracias.
No es exactamente lo que estoy buscando (sería genial ver que alguien tiene un paquete con la prueba de Nam-D'Agostino) pero puedo aprovechar algo de código.
Encontré alguna referencia al test de Gronnesby&Borgan en el paquete stcoxgof de Stata, pero estoy torpe para encontrar algo hecho en R (y me extraña que no haya nada)
Un saludo,
Miguel.
De: Carlos
2008 Aug 22
0
Re : Help on competing risk package cmprsk with time dependent covariate
...random 0 0
Call:
comp.risk(Surv(relt, rels > 0) ~ random, rel, rel$rels, times[-1], causeS = 1, resample.iid = 1, model = "prop")
any help is very welcome
regards
Philippe G
----- Message d'origine ----
De : Arthur Allignol <arthur.allignol@fdm.uni-freiburg.de>
À : Philippe Guardiola <allogreffe@yahoo.fr>
Cc : R-help@r-project.org; phguardiol@aol.com
Envoyé le : Vendredi, 22 Août 2008, 11h53mn 42s
Objet : Re: [R] Help on competing risk package cmprsk with time dependent covariate
Hello,
Something i don...
2013 Oct 04
0
Survival
A lo mejor si escribes a los que mantienen la Task-View de R (Survival
Analysius) te pueden dar la clave...:
CRAN Task View: Survival Analysis*Maintainer:*Arthur Allignol and Aurelien
Latouche*Contact:*arthur.allignol at fdm.uni-freiburg.de*Version:*2013-08-09
Y en Stata, como referencia adicional (que puede conducir a algo
equivalente en R):
http://www.jstatsoft.org/v53/i12/paper
Saludos,
Carlos Ortega
www.qualityexcellence.es
El 4 de octubre de 2013 14:32,...
2009 May 05
3
Cox Proportional Hazard with missing covariate data
Dear friends,
I have used R for some time now and have a tricky question about the coxph-function: To sum it up, I am not sure whether I can use coxph in conjunction with missing covariate data in a model with time-variant covariates. The point is: I know how "old" every piece that I oberserve is, but do not have fully historical information about the corresponding covariates. Maybe you
2008 Nov 27
1
Error in Comprting Risks Regression
Un texte encapsul? et encod? dans un jeu de caract?res inconnu a ?t? nettoy?...
Nom : non disponible
URL : <https://stat.ethz.ch/pipermail/r-help/attachments/20081127/cda70d6f/attachment.pl>
2009 Feb 27
2
Competing risks adjusted for covariates
Dear R-users
Has anybody implemented a function/package that will compute an individual's risk of an event in the presence of competing risks, adjusted for the individual's covariates?
The only thing that seems to come close is the cuminc function from cmprsk package, but I would like to adjust for more than one covariate (it allows you to stratify by a single grouping vector).
Any
2008 Jul 16
1
Problems with snowfall
Guys,
Is anyone using snowfall? It seems that the last version is broken. sfinit
contains test code:
data("config", package = "snowfall")
configM <- as.matrix(t(config))
config <- as.list(configM)
names(config) <- dimnames(configM)[[2]]
.sfOption$SERVER <<- as.character(config[["SERVER"]])
.sfOption$PORT <<-
2009 Mar 25
2
Competing risks Kalbfleisch & Prentice method
Dear R users
I would like to calculate the Cumulative incidence for an event
adjusting for competing risks and adjusting for covariates. One way to
do this in R is to use the cmprsk package, function crr. This uses the
Fine & Gray regression model. However, a simpler and more classical
approach would be to implement the Kalbfleisch & Prentice method (1980,
p 169), where one fits cause
2008 Aug 22
1
Help on competing risk package cmprsk with time dependent covariate
Dear R users,
I d like to assess the effect of "treatment" covariate on a disease relapse risk with the package cmprsk.
However, the effect of this covariate on survival is time-dependent
(assessed with cox.zph): no significant effect during the first year of follow-up,
then after 1 year a favorable effect is observed on survival (step
function might be the correct way to say that ?).