search for: all_col

Displaying 8 results from an estimated 8 matches for "all_col".

Did you mean: all_cols
2024 Dec 11
1
Cores hang when calling mcapply
...ength, value.var = "column1") > out2 <- dcast(dt[!is.na(column2)], ID_Key ~ column2, fun.aggregate = > length, value.var = "column2") > > # Step D: Merge the two wide tables by ID_Key > # Fill missing columns with 0 using data.table on-the-fly operations > all_cols <- unique(c(names(out1), names(out2))) > out1_missing <- setdiff(all_cols, names(out1)) > out2_missing <- setdiff(all_cols, names(out2)) > > # Add missing columns with 0 > for (col in out1_missing) out1[, (col) := 0] > for (col in out2_missing) out2[, (col) := 0] > &g...
2024 Dec 12
1
Cores hang when calling mcapply
...Key ~ column2, fun.aggregate = length, value.var = "column2") out1 <- setDT(out1 |> rename_with(~ paste0("column1_name_", .x, recycle0 = TRUE), -ID_Key)) out2 <- setDT(out1 |> rename_with(~ paste0("column2_name_", .x, recycle0 = TRUE), -ID_Key)) all_cols <- unique(c(names(out1), names(out2))) out1_missing <- setdiff(all_cols, names(out1)) out2_missing <- setdiff(all_cols, names(out2)) for (col in out1_missing) out1[, (col) := 0] for (col in out2_missing) out2[, (col) := 0] setcolorder(out1, all_cols) setcolorder(ou...
2024 Dec 11
1
Cores hang when calling mcapply
...length, value.var = "column1") > out2 <- dcast(dt[!is.na(column2)], ID_Key ~ column2, fun.aggregate = > length, value.var = "column2") > > # Step D: Merge the two wide tables by ID_Key > # Fill missing columns with 0 using data.table on-the-fly operations > all_cols <- unique(c(names(out1), names(out2))) > out1_missing <- setdiff(all_cols, names(out1)) > out2_missing <- setdiff(all_cols, names(out2)) > > # Add missing columns with 0 > for (col in out1_missing) out1[, (col) := 0] > for (col in out2_missing) out2[, (col) := 0] > &g...
2024 Dec 11
1
Cores hang when calling mcapply
...t(dt[!is.na(column2)], ID_Key ~ column2, fun.aggregate = > > > > > length, value.var = "column2") > > > > > > # Step D: Merge the two wide tables by ID_Key > > > # Fill missing columns with 0 using data.table on-the-fly operations > > > all_cols <- unique(c(names(out1), names(out2))) > > > out1_missing <- setdiff(all_cols, names(out1)) > > > out2_missing <- setdiff(all_cols, names(out2)) > > > > > > # Add missing columns with 0 > > > for (col in out1_missing) out1[, (col) := 0] > &g...
2024 Dec 12
1
Cores hang when calling mcapply
...fun.aggregate = length, value.var = "column2") > ? ? out1 <- setDT(out1 |> rename_with(~ paste0("column1_name_", .x, recycle0 = TRUE), -ID_Key)) > ? ? out2 <- setDT(out1 |> rename_with(~ paste0("column2_name_", .x, recycle0 = TRUE), -ID_Key)) > ? ? all_cols <- unique(c(names(out1), names(out2))) > ? ? out1_missing <- setdiff(all_cols, names(out1)) > ? ? out2_missing <- setdiff(all_cols, names(out2)) > ? ? for (col in out1_missing) out1[, (col) := 0] > ? ? for (col in out2_missing) out2[, (col) := 0] > ? ? setcolorder(out1, all...
2024 Dec 11
1
Cores hang when calling mcapply
...ot;) > > out2 <- dcast(dt[!is.na(column2)], ID_Key ~ column2, fun.aggregate = > > > length, value.var = "column2") > > > > # Step D: Merge the two wide tables by ID_Key > > # Fill missing columns with 0 using data.table on-the-fly operations > > all_cols <- unique(c(names(out1), names(out2))) > > out1_missing <- setdiff(all_cols, names(out1)) > > out2_missing <- setdiff(all_cols, names(out2)) > > > > # Add missing columns with 0 > > for (col in out1_missing) out1[, (col) := 0] > > for (col in out2_missi...
2024 Dec 11
1
Cores hang when calling mcapply
...length, value.var = "column1") > out2 <- dcast(dt[!is.na(column2)], ID_Key ~ column2, fun.aggregate = > length, value.var = "column2") > > # Step D: Merge the two wide tables by ID_Key > # Fill missing columns with 0 using data.table on-the-fly operations > all_cols <- unique(c(names(out1), names(out2))) > out1_missing <- setdiff(all_cols, names(out1)) > out2_missing <- setdiff(all_cols, names(out2)) > > # Add missing columns with 0 > for (col in out1_missing) out1[, (col) := 0] > for (col in out2_missing) out2[, (col) := 0] > &g...
2024 Dec 11
2
Cores hang when calling mcapply
Hi R users. Apologies for the lack of concrete examples because the dataset is large, and it being so I believe is the issue. I multiple, very large datasets for which I need to generate 0/1 absence/presence columns Some include over 200M rows, with two columns that need presence/absence columns based on the strings contained within them, as an example, one set has ~29k unique values and the