Displaying 4 results from an estimated 4 matches for "alfa1".
Did you mean:
alfa
2010 Mar 26
1
Problems if optimization
...ng to find the parameters of one
likelihood function, but when i otimize it, always appers a error or
advertisement and the solve does not occur.
The problem seems like that:
"lMix<-function(pars,y){
beta1<-pars[1]
beta2<-pars[2]
beta3<-pars[3]
beta4<-pars[4]
beta5<-pars[5]
alfa1<-pars[6]
Fsp<-log(1/(1+exp(beta1*y[,10]+beta2*y[,3]+beta3*y[,3]+beta4*y[,5]+beta5*y[,6]+alfa1*y[,11])))
Frp<-log(1/(1+exp(beta1*y[,10]+beta2*y[,3]+beta3*y[,3]+beta4*y[,5]+beta5*y[,6])))
logl<- sum((y[,15]*Fsp)+(y[,19]*Frp))
return(-logl)
}
optim(c(1,1,1,1,1,1), llMix, y=Mix, method=&quo...
2013 Nov 21
2
RStudio and R.app "segmentation fault" errors
...share/freeling/config/es.cfg --lang es --outf tagged </Users/earlbrown/temp_input.txt' had status 139
and sometimes I receive a "Trace/BPT trap: 5" error:
dyld: lazy symbol binding failed: Symbol not found: __ZN6icu_496LocaleD1Ev
Referenced from: /usr/local/lib/libfreeling-3.1-alfa1.dylib
Expected in: flat namespace
dyld: Symbol not found: __ZN6icu_496LocaleD1Ev
Referenced from: /usr/local/lib/libfreeling-3.1-alfa1.dylib
Expected in: flat namespace
/usr/local/bin/analyze: line 39: 2864 Trace/BPT trap: 5 $FREELING/bin/analyzer $param
Warning message:
running comm...
2012 Mar 16
3
Cosinor
...rror
Si Tj conocidos: Y = M + ?(betaj*X1j + gammaj * X2j) + error
Modelado: y ~ x1tot+ x2tot, donde los xtot (x totales) resultan de la suma de los parciales (donde cada parcial corresponde a un Tj).
Sin embargo, en el caso del modelo generalizado (componente cuadrática, cúbica, etc.):
Y = M + alfa1*t + alfa2*t2 + (?Aj * cos(2*pi*t/Tj + phij)) + error
¿Qué facilidades ofrece R para el estudio de este modelo?. Se hace manualmente?.
Gracias.
Un saludo.
2004 Mar 30
0
koq.q ---- Kent O' Quigley R2
...ed Log-Likelihood function for the Weibull regression model
# (see reference 1 in help file)
#
# Note: negative Log-likelihood value is returned
# to facilitate finding of extreme value of ELL in
# find.mu.alfa
#
np <- length(theta) - 2
alfa <- theta[np + 2]
mu <- theta[np + 1]
alfa1 <- theta1[np + 2]
mu1 <- theta1[np + 1]
beta <- theta[1:np]
beta1 <- theta1[1:np]
a <- alfa/alfa1
b.beta <- t(as.matrix(beta - a * beta1)) %*% t(x)
b <- (mu - a * mu1) + b.beta
ga1 <- gamma(a + 1) #
# negative value of ELL is returned !
#
- (log(alfa) - 0.5772...