Displaying 4 results from an estimated 4 matches for "abigailclifton".
2012 Mar 29
2
How to improve, at all, a simple GLM code
Hi There,
I am trying to fit a logit model to some data in a CSV file in R.
Here is my code:
Prepared_Data = read.csv("Prepared_Data.csv", header=TRUE)
Prepared_Data
attach(Prepared_Data)
lrfit<-glm(C3~A1*B2*D4*E5,family = binomial)
anova(lrfit, test="Chisq")
write.csv(anova(lrfit, test="Chisq"), file="CWModelA.csv")
shell.exec("CWModelA.csv")
2012 Apr 01
1
Possibly more coefficients?
Hi there,
I have this code:
Prepared_Data <- na.omit(read.csv("Prepared_Data.csv", header=TRUE))
pd <- Prepared_Data[,-3] ## data minus response variable
lev <- sapply(pd,function(x) length(unique(x)))
## total parameters for n variables
par(las=1,bty="l")
plot(cumprod(lev),log="y")
library(Matrix)
m <- sparse.model.matrix(~.^2,data=pd)
ncol(m)
2012 Mar 29
1
Data handling/optimum glm method.
Hi there,
I am trying to fit a generalised linear model to some loan application and default data. The purpose of this is to eventually work out the probability an applicant will default.
However, R seems to crash or die when I run "glm" on anything greater than a 5-way saturated model for my data.
My first question: is the best way to fit a generalised linear model in R to fit the
2012 Apr 29
1
CForest Error Logical Subscript Too Long
Hi,
This is my code (my data is attached):
library(languageR)
library(rms)
library(party)
OLDDATA <- read.csv("/Users/Abigail/Documents/OldData250412.csv")
OLDDATA$YD <- factor(OLDDATA$YD, label=c("Yes", "No"))?
OLDDATA$ND <- factor(OLDDATA$ND, label=c("Yes", "No"))?
attach(OLDDATA)
defaults <- cbind(YD, ND)
set.seed(47)
data.controls