Displaying 4 results from an estimated 4 matches for "17i".
Did you mean:
17
2006 Jan 12
0
bug in qr.coef() and (therefore) in qr.solve (PR#8476)
...e two lines
in question changed as above (and no other modifications).
Examples:
> A <- matrix(rnorm(9),3,3)
> B <- matrix(rnorm(9),3,3)
> solve(A+1i*B,A+1i*B)
[,1] [,2] [,3]
[1,] 1.000000e+00+0.000000e+00i -1.853360e-17-1.199306e-17i 0+0i
[2,] 2.338819e-17-1.192988e-19i 1.000000e+00+1.155338e-20i 0+0i
[3,] -6.940188e-18+1.120842e-17i 5.188659e-17-3.226848e-17i 1+0i
> qr.solve(A+1i*B,A+1i*B)
[,1] [,2]
[1,] 1.000000e-00-2.583088e-16i 1.000000e-00-2.583088e-16i
[2,] -1.045...
2006 Jan 10
1
eigen()
...1:100,10,10),FALSE,TRUE)$values
[1] 5.208398e+02+0.000000e+00i -1.583980e+01+0.000000e+00i
[3] -4.805412e-15+0.000000e+00i 1.347691e-15+4.487511e-15i
[5] 1.347691e-15-4.487511e-15i -4.269863e-16+0.000000e+00i
[7] 1.364748e-16+0.000000e+00i -1.269735e-16+0.000000e+00i
[9] -1.878758e-18+5.031259e-17i -1.878758e-18-5.031259e-17i
>
The same command gives different results in the development version:
> eigen(matrix(1:100,10,10),FALSE,TRUE)$values
[1] 3.903094e-118 -3.903094e-118 -2.610848e-312 -2.995687e-313
-2.748516e-313
[6] -1.073138e-314 -1.061000e-314 -1.060998e-314 4.940656e-...
2009 Aug 09
1
Inaccuracy in svd() with R ubuntu package
...age R
version.string R version 2.9.1 (2009-06-26)
> a <- matrix(rnorm(16) + 1i * rnorm(16),4)
> a
[,1] [,2] [,3]
[1,] 1.064712-1.343633i -1.6787892-0.7356784i -1.3110026-1.7295312i
[2,] -0.829329-1.538217i 0.6514795+0.8242854i 1.3948013-0.4340075i
[3,] 2.241843+0.297037i 2.9147970+0.2397768i -0.5197081-0.5796579i
[4,] 1.567566-1.154438i -1.0900313+0.0121055i 0.0141203+0.6139178i
[,4]
[1,] 1.344998+1.231298i
[2,] -0.190861+1.817582i
[3,] 1.855617-1.244282i
[4,] -1.735007+0....
2010 Jan 08
0
solving cubic/quartic equations non-iteratively -- comparisons
...-0i
>
# Repeating-roots example
> lp <- polynomial(c(8,-36, 54, -27))
> solve(lp)
[1] 0.6666648437558125-0.000003157332198i 0.6666648437558125+0.000003157332198i
[3] 0.6666703124883749+0.000000000000000i
> polyroot(lp)
[1] 6.666666666666670e-01+2e-16i 6.666666666666666e-01-8e-17i
[3] 6.666666666666664e-01-1e-16i
# ------------------------------------------------------------------------- #
Matlab:
>> format long
>> format compact
% Note: Matlab order of polynomial is reverse of R
% Posted example
>> p = [-8,14,-7,1]; p = p(4:(-1):1)
p =
1 -...