Displaying 8 results from an estimated 8 matches for "10090295".
2020 Oct 08
2
2 D density plot interpretation and manipulating the data
Hello,
I have a data frame like this:
> head(SNP)
mean var sd
FQC.10090295 0.0327 0.002678 0.0517
FQC.10119363 0.0220 0.000978 0.0313
FQC.10132112 0.0275 0.002088 0.0457
FQC.10201128 0.0169 0.000289 0.0170
FQC.10208432 0.0443 0.004081 0.0639
FQC.10218466 0.0116 0.000131 0.0115
...
and I am creating plot like this:
s <- ggplot(SNP, mapping = aes(x = mean, y = var))
s...
2020 Oct 09
2
2 D density plot interpretation and manipulating the data
...rs based on what the plot is showing:
> s <- ggplot(SNP, mapping = aes(x = mean, y = var))
> s <- s + geom_density_2d() + geom_point() + my.theme + ggtitle("SNPs")
>
> versus what is in the data:
>
> > head(SNP)
> mean var sd
> FQC.10090295 0.0327 0.002678 0.0517
> FQC.10119363 0.0220 0.000978 0.0313
> FQC.10132112 0.0275 0.002088 0.0457
> FQC.10201128 0.0169 0.000289 0.0170
> FQC.10208432 0.0443 0.004081 0.0639
> FQC.10218466 0.0116 0.000131 0.0115
> ...
>
> the distribution is not normal, it is right-skewed....
2020 Oct 09
0
2 D density plot interpretation and manipulating the data
...ter?
So I am trying to connect outliers based on what the plot is showing:
s <- ggplot(SNP, mapping = aes(x = mean, y = var))
s <- s + geom_density_2d() + geom_point() + my.theme + ggtitle("SNPs")
versus what is in the data:
> head(SNP)
mean var sd
FQC.10090295 0.0327 0.002678 0.0517
FQC.10119363 0.0220 0.000978 0.0313
FQC.10132112 0.0275 0.002088 0.0457
FQC.10201128 0.0169 0.000289 0.0170
FQC.10208432 0.0443 0.004081 0.0639
FQC.10218466 0.0116 0.000131 0.0115
...
the distribution is not normal, it is right-skewed.
Cheers,
Ana
On Fri, Oct 9, 2020 at 2:...
2020 Oct 09
2
2 D density plot interpretation and manipulating the data
> My understanding is that this represents bivariate normal
> approximation of the data which uses the kernel density function to
> test for inclusion within a level set. (please correct me)
You can fit a bivariate normal distribution by computing five parameters.
Two means, two standard deviations (or two variances) and one
correlation (or covariance) coefficient.
The bivariate normal
2020 Oct 09
0
2 D density plot interpretation and manipulating the data
...wing:
>> s <- ggplot(SNP, mapping = aes(x = mean, y = var))
>> s <- s + geom_density_2d() + geom_point() + my.theme + ggtitle("SNPs")
>>
>> versus what is in the data:
>>
>> > head(SNP)
>> mean var sd
>> FQC.10090295 0.0327 0.002678 0.0517
>> FQC.10119363 0.0220 0.000978 0.0313
>> FQC.10132112 0.0275 0.002088 0.0457
>> FQC.10201128 0.0169 0.000289 0.0170
>> FQC.10208432 0.0443 0.004081 0.0639
>> FQC.10218466 0.0116 0.000131 0.0115
>> ...
>>
>> the distribution is...
2020 Oct 09
3
2 D density plot interpretation and manipulating the data
...mapping = aes(x = mean, y = var))
> >> s <- s + geom_density_2d() + geom_point() + my.theme + ggtitle("SNPs")
> >>
> >> versus what is in the data:
> >>
> >> > head(SNP)
> >> mean var sd
> >> FQC.10090295 0.0327 0.002678 0.0517
> >> FQC.10119363 0.0220 0.000978 0.0313
> >> FQC.10132112 0.0275 0.002088 0.0457
> >> FQC.10201128 0.0169 0.000289 0.0170
> >> FQC.10208432 0.0443 0.004081 0.0639
> >> FQC.10218466 0.0116 0.000131 0.0115
> >> ...
> >...
2020 Oct 09
0
2 D density plot interpretation and manipulating the data
...geom_density_2d() + geom_point() + my.theme + ggtitle("SNPS_red")
On Thu, Oct 8, 2020 at 3:52 PM Ana Marija <sokovic.anamarija at gmail.com> wrote:
>
> Hello,
>
> I have a data frame like this:
>
> > head(SNP)
> mean var sd
> FQC.10090295 0.0327 0.002678 0.0517
> FQC.10119363 0.0220 0.000978 0.0313
> FQC.10132112 0.0275 0.002088 0.0457
> FQC.10201128 0.0169 0.000289 0.0170
> FQC.10208432 0.0443 0.004081 0.0639
> FQC.10218466 0.0116 0.000131 0.0115
> ...
>
> and I am creating plot like this:
>
> s <-...
2020 Oct 09
0
2 D density plot interpretation and manipulating the data
...gt; > >> s <- s + geom_density_2d() + geom_point() + my.theme + ggtitle("SNPs")
> > >>
> > >> versus what is in the data:
> > >>
> > >> > head(SNP)
> > >> mean var sd
> > >> FQC.10090295 0.0327 0.002678 0.0517
> > >> FQC.10119363 0.0220 0.000978 0.0313
> > >> FQC.10132112 0.0275 0.002088 0.0457
> > >> FQC.10201128 0.0169 0.000289 0.0170
> > >> FQC.10208432 0.0443 0.004081 0.0639
> > >> FQC.10218466 0.0116 0.000131 0.0115
&...