search for: 0.6477

Displaying 5 results from an estimated 5 matches for "0.6477".

Did you mean: 0.477
2006 Sep 26
2
treatment effect at specific time point within mixed effects model
All, The code below is for a pseudo dataset of repeated measures on patients where there is also a treatment factor called "drug". Time is treated as categorical. What code is necessary to test for a treatment effect at a single time point, e.g., time = 3? Does the answer matter if the design is a crossover design, i.e, each patient received drug and placebo? Finally, what would
2003 Dec 17
1
repeated measures aov problem
Hi all, I have a strange problem and rigth now I can't figure out a solution. Trying to calculate an ANOVA with one between subject factor (group) and one within (hemisphere). My dependent variable is source localization (data). My N = 25. My data.frame looks like this: > ML.dist.stack subj group hemisphere data 1 1 tin left 0.7460840 2 2 tin left
2005 May 26
0
Confidence intervals for prediction based on the logistic equation
Greetings, We are performing a meta-analysis of mink pup survival data versus chemical concentration. We have modeled percent survival successfully using nls as shown below and the plot. What we need to do is construct a confidence interval on the concentration at which we get 50% survival (aka the EC50, although we may want other percent survivals in the future). My first question is, what seems
2006 Oct 05
2
treatment effect at specific time point within mixedeffects model
Hi David: In looking at your original post it is a bit difficult to ascertain exactly what your null hypothesis was. That is, you want to assess whether there is a treatment effect at time 3, but compared to what. I think your second post clears this up. You should refer to pages 224- 225 of Pinhiero and Bates for your answer. This shows how to specify contrasts. > -----Original Message-----
2014 Sep 01
1
Correlation Matrix with a Covariate
R Help - I'm trying to run a correlation matrix with a covariate of "age" and will at some point will also want to covary other variables concurrently. I'm using the "psych" package and have tried other methods such as writing a loop to extract semi-partial correlations, but it does not seem to be working. How can I accomplish this? library(psych) > set.cor(y =