Jorrit Jongma
2020-May-19 14:28 UTC
[PATCHv2] SSE2/SSSE3 optimized version of get_checksum1() for x86-64
I've read up some more on the subject, and it seems the proper way to do this with GCC is g++ and target attributes. I've refactored the patch that way, and it indeed uses SSSE3 automatically on supporting CPUs, regardless of the build host, so this should be ideal both for home builders and distros. Getting the code to build right in c++ mode (checksum_sse2.cpp only) was a bit of an adventure, requiring modifications to mkproto.awk, configure.ac, and Makefile.in. I've done my best to prevent any c++ compilation happening in case the optimizations are not enabled (g++ isn't used, build target isn't x86-64, or --disable-sse2 was passed to configure) and prevent a dependency on libstdc++. I've tested that part extensively but it would be great if the maintainer (and others) could give this part a close second look. This patch _replaces_ my previous submit, it does not build on top of it. GitHub: https://github.com/Chainfire/rsync/commit/ef3c13390601752ef652b37c15610e12e2309fea https://github.com/Chainfire/rsync/commit/ef3c13390601752ef652b37c15610e12e2309fea.patch Raw:>From ef3c13390601752ef652b37c15610e12e2309fea Mon Sep 17 00:00:00 2001From: Jorrit Jongma <git at jongma.org> Date: Tue, 19 May 2020 14:52:40 +0200 Subject: [PATCH] SSE2/SSSE3 optimized version of get_checksum1() for x86-64 Requires compilation using GCC C++ front end, build scripts have been modified accordingly. C++ is only used when the optimization is enabled (g++ as compiler, x86-64 build target, --disable-sse2 not passed to configure). --- Makefile.in | 12 +- checksum.c | 2 + checksum_sse2.cpp | 289 ++++++++++++++++++++++++++++++++++++++++++++++ configure.ac | 22 ++++ mkproto.awk | 2 + 5 files changed, 325 insertions(+), 2 deletions(-) create mode 100644 checksum_sse2.cpp diff --git a/Makefile.in b/Makefile.in index 59649562..0953e601 100644 --- a/Makefile.in +++ b/Makefile.in @@ -12,6 +12,9 @@ LIBS=@LIBS@ CC=@CC@ CFLAGS=@CFLAGS@ CPPFLAGS=@CPPFLAGS@ +CXX=@CXX@ +CXXFLAGS=@CXXFLAGS@ +CXXUSED=@CXXUSED@ EXEEXT=@EXEEXT@ LDFLAGS=@LDFLAGS@ LIBOBJDIR=lib/ @@ -27,7 +30,11 @@ SHELL=/bin/sh VERSION=@RSYNC_VERSION@ .SUFFIXES: -.SUFFIXES: .c .o +ifeq ($(CXXUSED),yes) + .SUFFIXES: .c .cpp .o +else + .SUFFIXES: .c .o +endif GENFILES=configure.sh aclocal.m4 config.h.in proto.h proto.h-tstamp rsync.1 rsync-ssl.1 rsyncd.conf.5 HEADERS=byteorder.h config.h errcode.h proto.h rsync.h ifuncs.h itypes.h inums.h \ @@ -41,10 +48,11 @@ OBJS1=flist.o rsync.o generator.o receiver.o cleanup.o sender.o exclude.o \ OBJS2=options.o io.o compat.o hlink.o token.o uidlist.o socket.o hashtable.o \ fileio.o batch.o clientname.o chmod.o acls.o xattrs.o OBJS3=progress.o pipe.o +CXXOBJ=@CXXOBJ@ DAEMON_OBJ = params.o loadparm.o clientserver.o access.o connection.o authenticate.o popt_OBJS=popt/findme.o popt/popt.o popt/poptconfig.o \ popt/popthelp.o popt/poptparse.o -OBJS=$(OBJS1) $(OBJS2) $(OBJS3) $(DAEMON_OBJ) $(LIBOBJ) @BUILD_ZLIB@ @BUILD_POPT@ +OBJS=$(OBJS1) $(OBJS2) $(OBJS3) $(CXXOBJ) $(DAEMON_OBJ) $(LIBOBJ) @BUILD_ZLIB@ @BUILD_POPT@ TLS_OBJ = tls.o syscall.o t_stub.o lib/compat.o lib/snprintf.o lib/permstring.o lib/sysxattrs.o @BUILD_POPT@ diff --git a/checksum.c b/checksum.c index cd234038..7c42742a 100644 --- a/checksum.c +++ b/checksum.c @@ -99,6 +99,7 @@ int canonical_checksum(int csum_type) return csum_type >= CSUM_MD4 ? 1 : 0; } +#ifndef ENABLE_SSE2 // see checksum_sse2.cpp /* a simple 32 bit checksum that can be updated from either end (inspired by Mark Adler's Adler-32 checksum) @@ -119,6 +120,7 @@ uint32 get_checksum1(char *buf1, int32 len) } return (s1 & 0xffff) + (s2 << 16); } +#endif void get_checksum2(char *buf, int32 len, char *sum) { diff --git a/checksum_sse2.cpp b/checksum_sse2.cpp new file mode 100644 index 00000000..9a2ae86b --- /dev/null +++ b/checksum_sse2.cpp @@ -0,0 +1,289 @@ +/* + * SSE2/SSSE3-optimized routines to support checksumming of bytes. + * + * Copyright (C) 1996 Andrew Tridgell + * Copyright (C) 1996 Paul Mackerras + * Copyright (C) 2004-2020 Wayne Davison + * Copyright (C) 2020 Jorrit Jongma + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 3 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License along + * with this program; if not, visit the http://fsf.org website. + */ +/* + * Optimization target for get_checksum1() was the Intel Atom D2700, the + * slowest CPU in the test set and the most likely to be CPU limited during + * transfers. The combination of intrinsics was chosen specifically for the + * most gain on that CPU, other combinations were occasionally slightly + * faster on the others. + * + * While on more modern CPUs transfers are less likely to be CPU limited, + * lower CPU usage is always better. Improvements may still be seen when + * matching chunks from NVMe storage even on newer CPUs. + * + * Benchmarks C SSE2 SSSE3 + * - Intel Atom D2700 550 MB/s 750 MB/s 1000 MB/s + * - Intel i7-7700hq 1850 MB/s 2550 MB/s 4050 MB/s + * - AMD ThreadRipper 2950x 2900 MB/s 5600 MB/s 8950 MB/s + * + * This optimization for get_checksum1() is intentionally limited to x86-64 + * as no 32-bit CPU was available for testing. As 32-bit CPUs only have half + * the available xmm registers, this optimized version may not be faster than + * the pure C version anyway. Note that all x86-64 CPUs support SSE2. + * + * This file is compiled using GCC 4.8+'s C++ front end to allow the use of + * the target attribute, selecting the fastest code path based on runtime + * detection of CPU capabilities. + */ + +#ifdef __x86_64__ +#ifdef __cplusplus + +#include "rsync.h" + +#ifdef ENABLE_SSE2 + +#include <immintrin.h> + +/* Compatibility functions to let our SSSE3 algorithm run on SSE2 */ + +__attribute__ ((target ("sse2"))) static inline __m128i sse_load_si128(__m128i_u* buf) { + return _mm_loadu_si128(buf); +} + +__attribute__ ((target ("ssse3"))) static inline __m128i sse_load_si128(__m128i_u* buf) { + return _mm_lddqu_si128(buf); // same as loadu on all but the oldest SSSE3 CPUs +} + +__attribute__ ((target ("sse2"))) static inline __m128i sse_interleave_odd_epi16(__m128i a, __m128i b) { + return _mm_packs_epi32( + _mm_srai_epi32(a, 16), + _mm_srai_epi32(b, 16) + ); +} + +__attribute__ ((target ("sse2"))) static inline __m128i sse_interleave_even_epi16(__m128i a, __m128i b) { + return sse_interleave_odd_epi16( + _mm_slli_si128(a, 2), + _mm_slli_si128(b, 2) + ); +} + +__attribute__ ((target ("sse2"))) static inline __m128i sse_mulu_odd_epi8(__m128i a, __m128i b) { + return _mm_mullo_epi16( + _mm_srli_epi16(a, 8), + _mm_srai_epi16(b, 8) + ); +} + +__attribute__ ((target ("sse2"))) static inline __m128i sse_mulu_even_epi8(__m128i a, __m128i b) { + return _mm_mullo_epi16( + _mm_and_si128(a, _mm_set1_epi16(0xFF)), + _mm_srai_epi16(_mm_slli_si128(b, 1), 8) + ); +} + +__attribute__ ((target ("sse2"))) static inline __m128i sse_hadds_epi16(__m128i a, __m128i b) { + return _mm_adds_epi16( + sse_interleave_even_epi16(a, b), + sse_interleave_odd_epi16(a, b) + ); +} + +__attribute__ ((target ("ssse3"))) static inline __m128i sse_hadds_epi16(__m128i a, __m128i b) { + return _mm_hadds_epi16(a, b); +} + +__attribute__ ((target ("sse2"))) static inline __m128i sse_maddubs_epi16(__m128i a, __m128i b) { + return _mm_adds_epi16( + sse_mulu_even_epi8(a, b), + sse_mulu_odd_epi8(a, b) + ); +} + +__attribute__ ((target ("ssse3"))) static inline __m128i sse_maddubs_epi16(__m128i a, __m128i b) { + return _mm_maddubs_epi16(a, b); +} + +__attribute__ ((target ("default"))) static inline __m128i sse_load_si128(__m128i_u* buf) { } +__attribute__ ((target ("default"))) static inline __m128i sse_interleave_odd_epi16(__m128i a, __m128i b) { } +__attribute__ ((target ("default"))) static inline __m128i sse_interleave_even_epi16(__m128i a, __m128i b) { } +__attribute__ ((target ("default"))) static inline __m128i sse_mulu_odd_epi8(__m128i a, __m128i b) { } +__attribute__ ((target ("default"))) static inline __m128i sse_mulu_even_epi8(__m128i a, __m128i b) { } +__attribute__ ((target ("default"))) static inline __m128i sse_hadds_epi16(__m128i a, __m128i b) { } +__attribute__ ((target ("default"))) static inline __m128i sse_maddubs_epi16(__m128i a, __m128i b) { } + +/* + a simple 32 bit checksum that can be updated from either end + (inspired by Mark Adler's Adler-32 checksum) + */ +/* + Original loop per 4 bytes: + s2 += 4*(s1 + buf[i]) + 3*buf[i+1] + 2*buf[i+2] + buf[i+3] + 10*CHAR_OFFSET; + s1 += buf[i] + buf[i+1] + buf[i+2] + buf[i+3] + 4*CHAR_OFFSET; + + SSE2/SSSE3 loop per 32 bytes: + int16 t1[8]; + int16 t2[8]; + for (int j = 0; j < 8; j++) { + t1[j] = buf[j*4 + i] + buf[j*4 + i+1] + buf[j*4 + i+2] + buf[j*4 + i+3]; + t2[j] = 4*buf[j*4 + i] + 3*buf[j*4 + i+1] + 2*buf[j*4 + i+2] + buf[j*4 + i+3]; + } + s2 += 32*s1 + + 28*t1[0] + 24*t1[1] + 20*t1[2] + 16*t1[3] + 12*t1[4] + 8*t1[5] + 4*t1[6] + + t2[0] + t2[1] + t2[2] + t2[3] + t2[4] + t2[5] + t2[6] + t2[7] + + ((16+32+48+64+80+96) + 8)*CHAR_OFFSET; + s1 += t1[0] + t1[1] + t1[2] + t1[3] + t1[4] + t1[5] + t1[6] + t1[7] + + 32*CHAR_OFFSET; + */ +/* + Both sse2 and ssse3 targets must be specified here for the optimizer to + fully unroll into two separate functions for each, or it will decide which + version of other functions (such as sse_maddubs_epi16) to call every loop + iteration instead of properly inlining them, negating any performance gain. + */ +__attribute__ ((target ("sse2", "ssse3"))) static inline uint32 get_checksum1_accel(char *buf1, int32 len) { + int32 i; + uint32 s1, s2; + schar *buf = (schar *)buf1; + + i = s1 = s2 = 0; + if (len > 32) { + const char mul_t1_buf[16] = {28, 0, 24, 0, 20, 0, 16, 0, 12, 0, 8, 0, 4, 0, 0, 0}; + __m128i mul_t1 = sse_load_si128((__m128i_u*)mul_t1_buf); + __m128i ss1 = _mm_setzero_si128(); + __m128i ss2 = _mm_setzero_si128(); + + for (i = 0; i < (len-32); i+=32) { + // Load ... 2*[int8*16] + __m128i in8_1 = sse_load_si128((__m128i_u*)&buf[i]); + __m128i in8_2 = sse_load_si128((__m128i_u*)&buf[i + 16]); + + // (1*buf[i] + 1*buf[i+1]), (1*buf[i+2], 1*buf[i+3]), ... 2*[int16*8] + // Fastest, even though multiply by 1 + __m128i mul_one = _mm_set1_epi8(1); + __m128i add16_1 = sse_maddubs_epi16(mul_one, in8_1); + __m128i add16_2 = sse_maddubs_epi16(mul_one, in8_2); + + // (4*buf[i] + 3*buf[i+1]), (2*buf[i+2], buf[i+3]), ... 2*[int16*8] + __m128i mul_const = _mm_set1_epi32(4 + (3 << 8) + (2 << 16) + (1 << 24)); + __m128i mul_add16_1 = sse_maddubs_epi16(mul_const, in8_1); + __m128i mul_add16_2 = sse_maddubs_epi16(mul_const, in8_2); + + // s2 += 32*s1 + ss2 = _mm_add_epi32(ss2, _mm_slli_epi32(ss1, 5)); + + // [sum(t1[0]..t1[6]), X, X, X] [int32*4]; faster than multiple _mm_hadds_epi16 + // Shifting left, then shifting right again and shuffling (rather than just + // shifting right as with mul32 below) to cheaply end up with the correct sign + // extension as we go from int16 to int32. + __m128i sum_add32 = _mm_add_epi16(add16_1, add16_2); + sum_add32 = _mm_add_epi16(sum_add32, _mm_slli_si128(sum_add32, 2)); + sum_add32 = _mm_add_epi16(sum_add32, _mm_slli_si128(sum_add32, 4)); + sum_add32 = _mm_add_epi16(sum_add32, _mm_slli_si128(sum_add32, 8)); + sum_add32 = _mm_srai_epi32(sum_add32, 16); + sum_add32 = _mm_shuffle_epi32(sum_add32, 3); + + // [sum(t2[0]..t2[6]), X, X, X] [int32*4]; faster than multiple _mm_hadds_epi16 + __m128i sum_mul_add32 = _mm_add_epi16(mul_add16_1, mul_add16_2); + sum_mul_add32 = _mm_add_epi16(sum_mul_add32, _mm_slli_si128(sum_mul_add32, 2)); + sum_mul_add32 = _mm_add_epi16(sum_mul_add32, _mm_slli_si128(sum_mul_add32, 4)); + sum_mul_add32 = _mm_add_epi16(sum_mul_add32, _mm_slli_si128(sum_mul_add32, 8)); + sum_mul_add32 = _mm_srai_epi32(sum_mul_add32, 16); + sum_mul_add32 = _mm_shuffle_epi32(sum_mul_add32, 3); + + // s1 += t1[0] + t1[1] + t1[2] + t1[3] + t1[4] + t1[5] + t1[6] + t1[7] + ss1 = _mm_add_epi32(ss1, sum_add32); + + // s2 += t2[0] + t2[1] + t2[2] + t2[3] + t2[4] + t2[5] + t2[6] + t2[7] + ss2 = _mm_add_epi32(ss2, sum_mul_add32); + + // [t1[0], t1[1], ...] [int16*8] + // We could've combined this with generating sum_add32 above and save one _mm_add_epi16, + // but benchmarking shows that as being slower + __m128i add16 = sse_hadds_epi16(add16_1, add16_2); + + // [t1[0], t1[1], ...] -> [t1[0]*28 + t1[1]*24, ...] [int32*4] + __m128i mul32 = _mm_madd_epi16(add16, mul_t1); + + // [sum(mul32), X, X, X] [int32*4]; faster than multiple _mm_hadd_epi32 + mul32 = _mm_add_epi32(mul32, _mm_srli_si128(mul32, 4)); + mul32 = _mm_add_epi32(mul32, _mm_srli_si128(mul32, 8)); + + // s2 += 28*t1[0] + 24*t1[1] + 20*t1[2] + 16*t1[3] + 12*t1[4] + 8*t1[5] + 4*t1[6] + ss2 = _mm_add_epi32(ss2, mul32); + +#if CHAR_OFFSET != 0 + // s1 += 32*CHAR_OFFSET + __m128i char_offset_multiplier = _mm_set1_epi32(32 * CHAR_OFFSET); + ss1 = _mm_add_epi32(ss1, char_offset_multiplier); + + // s2 += 528*CHAR_OFFSET + char_offset_multiplier = _mm_set1_epi32(528 * CHAR_OFFSET); + ss2 = _mm_add_epi32(ss2, char_offset_multiplier); +#endif + } + + int32 x[4] = {0}; + _mm_store_si128((__m128i_u*)x, ss1); + s1 = x[0]; + _mm_store_si128((__m128i_u*)x, ss2); + s2 = x[0]; + } + for (; i < (len-4); i+=4) { + s2 += 4*(s1 + buf[i]) + 3*buf[i+1] + 2*buf[i+2] + buf[i+3] + 10*CHAR_OFFSET; + s1 += (buf[i] + buf[i+1] + buf[i+2] + buf[i+3] + 4*CHAR_OFFSET); + } + for (; i < len; i++) { + s1 += (buf[i]+CHAR_OFFSET); s2 += s1; + } + return (s1 & 0xffff) + (s2 << 16); +} + +/* + a simple 32 bit checksum that can be updated from either end + (inspired by Mark Adler's Adler-32 checksum) + */ +/* + Pure copy/paste from get_checksum1 @ checksum.c. We cannot use the target + attribute there as that requires cpp. + */ +__attribute__ ((target ("default"))) static inline uint32 get_checksum1_accel(char *buf1, int32 len) +{ + int32 i; + uint32 s1, s2; + schar *buf = (schar *)buf1; + + s1 = s2 = 0; + for (i = 0; i < (len-4); i+=4) { + s2 += 4*(s1 + buf[i]) + 3*buf[i+1] + 2*buf[i+2] + buf[i+3] + 10*CHAR_OFFSET; + s1 += (buf[i+0] + buf[i+1] + buf[i+2] + buf[i+3] + 4*CHAR_OFFSET); + } + for (; i < len; i++) { + s1 += (buf[i]+CHAR_OFFSET); s2 += s1; + } + return (s1 & 0xffff) + (s2 << 16); +} + +extern "C" { + +/* + C doesn't support the target attribute, so here's another wrapper +*/ +uint32 get_checksum1(char *buf1, int32 len) { + return get_checksum1_accel(buf1, len); +} + +} +#endif /* ENABLE_SSE2 */ +#endif /* __cplusplus */ +#endif /* __x86_64__ */ \ No newline at end of file diff --git a/configure.ac b/configure.ac index d4e95fb8..ff0c0902 100644 --- a/configure.ac +++ b/configure.ac @@ -41,6 +41,7 @@ fi dnl Checks for programs. AC_PROG_CC AC_PROG_CPP +AC_PROG_CXX AC_PROG_EGREP AC_PROG_INSTALL AC_PROG_MKDIR_P @@ -164,6 +165,27 @@ fi AC_DEFINE_UNQUOTED(NOBODY_USER, "nobody", [unprivileged user--e.g. nobody]) AC_DEFINE_UNQUOTED(NOBODY_GROUP, "$NOBODY_GROUP", [unprivileged group for unprivileged user]) +# SSE2+ optimizations on x86-64 require g++ support +AC_MSG_CHECKING([whether to enable SSE2+ optimizations]) +AC_ARG_ENABLE(sse2, + AS_HELP_STRING([--disable-sse2],[disable SSE2+ optimizations (req. g++ and x86-64)])) + +if test x"$enable_sse2" != x"no" && test x"$build_cpu" = x"x86_64" && test x"$CXX" = x"g++"; then + AC_MSG_RESULT([yes]) + AC_DEFINE(ENABLE_SSE2, 1, [Define to 1 to enable SSE2+ optimizations (requires g++ and x86-64)]) + CXXOBJ="$CXXOBJ checksum_sse2.o" +else + AC_MSG_RESULT(no) +fi + +# We only use g++ for its target attribute dispatching, disable unneeded bulky features +if test x"$CXXOBJ" != x""; then + CXXUSED=yes + CXXFLAGS="$CXXFLAGS -fno-exceptions -fno-rtti" +fi +AC_SUBST(CXXUSED) +AC_SUBST(CXXOBJ) + # arrgh. libc in some old debian version screwed up the largefile # stuff, getting byte range locking wrong AC_CACHE_CHECK([for broken largefile support],rsync_cv_HAVE_BROKEN_LARGEFILE,[ diff --git a/mkproto.awk b/mkproto.awk index ab97d54f..3a26eb51 100644 --- a/mkproto.awk +++ b/mkproto.awk @@ -3,6 +3,7 @@ BEGIN { while ((getline i < "proto.h") > 0) old_protos = old_protos ? old_protos "\n" i : i protos = "/* This file is automatically generated with \"make proto\". DO NOT EDIT */\n" + protos = protos "#ifndef __cplusplus\n" } inheader { @@ -34,6 +35,7 @@ inheader { } END { + protos = protos "\n\n" "#endif\n" if (old_protos != protos) print protos > "proto.h" printf "" > "proto.h-tstamp" }
I believe this group used to be available through NNTP on gmane, but the last message seems to be dated "Sun, 15 Jan 2017 14:15:25 +0000" It is not clear why the messages stopped being sent to gmane at that point. gmane itself thinks it is still subscribed and there is an automated web admin interface through which one can request resubscription. https://admin.gmane.io/ (requires javascript) I wanted to check. Is there some reason why this rsync list shouldn't be on gmane - otherwise could someone go ahead and request reubscription. -- Regards Madhu
Roland
2020-May-20 07:18 UTC
[PATCHv2] SSE2/SSSE3 optimized version of get_checksum1() for x86-64
would it perhaps make sense to have a "--disable-sse2/3" commandline switch in rsync, too - at least for some timeframe until this is considered "rock solid" ? i dislike having automatic cpu feature switching code in a tool which needs to be reliable for me, this new optimization may have issues - and without such switch it can't be easily workarounded without replacing the binary/package. regards roland Am 19.05.20 um 16:28 schrieb Jorrit Jongma via rsync:> I've read up some more on the subject, and it seems the proper way to > do this with GCC is g++ and target attributes. I've refactored the > patch that way, and it indeed uses SSSE3 automatically on supporting > CPUs, regardless of the build host, so this should be ideal both for > home builders and distros. > > Getting the code to build right in c++ mode (checksum_sse2.cpp only) > was a bit of an adventure, requiring modifications to mkproto.awk, > configure.ac, and Makefile.in. > > I've done my best to prevent any c++ compilation happening in case the > optimizations are not enabled (g++ isn't used, build target isn't > x86-64, or --disable-sse2 was passed to configure) and prevent a > dependency on libstdc++. I've tested that part extensively but it > would be great if the maintainer (and others) could give this part a > close second look. > > This patch _replaces_ my previous submit, it does not build on top of it. > > GitHub: > > https://github.com/Chainfire/rsync/commit/ef3c13390601752ef652b37c15610e12e2309fea > > https://github.com/Chainfire/rsync/commit/ef3c13390601752ef652b37c15610e12e2309fea.patch > > Raw: > > From ef3c13390601752ef652b37c15610e12e2309fea Mon Sep 17 00:00:00 2001 > From: Jorrit Jongma <git at jongma.org> > Date: Tue, 19 May 2020 14:52:40 +0200 > Subject: [PATCH] SSE2/SSSE3 optimized version of get_checksum1() for x86-64 > > Requires compilation using GCC C++ front end, build scripts have been > modified accordingly. C++ is only used when the optimization is enabled > (g++ as compiler, x86-64 build target, --disable-sse2 not passed to > configure). > --- > Makefile.in | 12 +- > checksum.c | 2 + > checksum_sse2.cpp | 289 ++++++++++++++++++++++++++++++++++++++++++++++ > configure.ac | 22 ++++ > mkproto.awk | 2 + > 5 files changed, 325 insertions(+), 2 deletions(-) > create mode 100644 checksum_sse2.cpp > > diff --git a/Makefile.in b/Makefile.in > index 59649562..0953e601 100644 > --- a/Makefile.in > +++ b/Makefile.in > @@ -12,6 +12,9 @@ LIBS=@LIBS@ > CC=@CC@ > CFLAGS=@CFLAGS@ > CPPFLAGS=@CPPFLAGS@ > +CXX=@CXX@ > +CXXFLAGS=@CXXFLAGS@ > +CXXUSED=@CXXUSED@ > EXEEXT=@EXEEXT@ > LDFLAGS=@LDFLAGS@ > LIBOBJDIR=lib/ > @@ -27,7 +30,11 @@ SHELL=/bin/sh > VERSION=@RSYNC_VERSION@ > > .SUFFIXES: > -.SUFFIXES: .c .o > +ifeq ($(CXXUSED),yes) > + .SUFFIXES: .c .cpp .o > +else > + .SUFFIXES: .c .o > +endif > > GENFILES=configure.sh aclocal.m4 config.h.in proto.h proto.h-tstamp > rsync.1 rsync-ssl.1 rsyncd.conf.5 > HEADERS=byteorder.h config.h errcode.h proto.h rsync.h ifuncs.h > itypes.h inums.h \ > @@ -41,10 +48,11 @@ OBJS1=flist.o rsync.o generator.o receiver.o > cleanup.o sender.o exclude.o \ > OBJS2=options.o io.o compat.o hlink.o token.o uidlist.o socket.o hashtable.o \ > fileio.o batch.o clientname.o chmod.o acls.o xattrs.o > OBJS3=progress.o pipe.o > +CXXOBJ=@CXXOBJ@ > DAEMON_OBJ = params.o loadparm.o clientserver.o access.o connection.o > authenticate.o > popt_OBJS=popt/findme.o popt/popt.o popt/poptconfig.o \ > popt/popthelp.o popt/poptparse.o > -OBJS=$(OBJS1) $(OBJS2) $(OBJS3) $(DAEMON_OBJ) $(LIBOBJ) @BUILD_ZLIB@ > @BUILD_POPT@ > +OBJS=$(OBJS1) $(OBJS2) $(OBJS3) $(CXXOBJ) $(DAEMON_OBJ) $(LIBOBJ) > @BUILD_ZLIB@ @BUILD_POPT@ > > TLS_OBJ = tls.o syscall.o t_stub.o lib/compat.o lib/snprintf.o > lib/permstring.o lib/sysxattrs.o @BUILD_POPT@ > > diff --git a/checksum.c b/checksum.c > index cd234038..7c42742a 100644 > --- a/checksum.c > +++ b/checksum.c > @@ -99,6 +99,7 @@ int canonical_checksum(int csum_type) > return csum_type >= CSUM_MD4 ? 1 : 0; > } > > +#ifndef ENABLE_SSE2 // see checksum_sse2.cpp > /* > a simple 32 bit checksum that can be updated from either end > (inspired by Mark Adler's Adler-32 checksum) > @@ -119,6 +120,7 @@ uint32 get_checksum1(char *buf1, int32 len) > } > return (s1 & 0xffff) + (s2 << 16); > } > +#endif > > void get_checksum2(char *buf, int32 len, char *sum) > { > diff --git a/checksum_sse2.cpp b/checksum_sse2.cpp > new file mode 100644 > index 00000000..9a2ae86b > --- /dev/null > +++ b/checksum_sse2.cpp > @@ -0,0 +1,289 @@ > +/* > + * SSE2/SSSE3-optimized routines to support checksumming of bytes. > + * > + * Copyright (C) 1996 Andrew Tridgell > + * Copyright (C) 1996 Paul Mackerras > + * Copyright (C) 2004-2020 Wayne Davison > + * Copyright (C) 2020 Jorrit Jongma > + * > + * This program is free software; you can redistribute it and/or modify > + * it under the terms of the GNU General Public License as published by > + * the Free Software Foundation; either version 3 of the License, or > + * (at your option) any later version. > + * > + * This program is distributed in the hope that it will be useful, > + * but WITHOUT ANY WARRANTY; without even the implied warranty of > + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the > + * GNU General Public License for more details. > + * > + * You should have received a copy of the GNU General Public License along > + * with this program; if not, visit the http://fsf.org website. > + */ > +/* > + * Optimization target for get_checksum1() was the Intel Atom D2700, the > + * slowest CPU in the test set and the most likely to be CPU limited during > + * transfers. The combination of intrinsics was chosen specifically for the > + * most gain on that CPU, other combinations were occasionally slightly > + * faster on the others. > + * > + * While on more modern CPUs transfers are less likely to be CPU limited, > + * lower CPU usage is always better. Improvements may still be seen when > + * matching chunks from NVMe storage even on newer CPUs. > + * > + * Benchmarks C SSE2 SSSE3 > + * - Intel Atom D2700 550 MB/s 750 MB/s 1000 MB/s > + * - Intel i7-7700hq 1850 MB/s 2550 MB/s 4050 MB/s > + * - AMD ThreadRipper 2950x 2900 MB/s 5600 MB/s 8950 MB/s > + * > + * This optimization for get_checksum1() is intentionally limited to x86-64 > + * as no 32-bit CPU was available for testing. As 32-bit CPUs only have half > + * the available xmm registers, this optimized version may not be faster than > + * the pure C version anyway. Note that all x86-64 CPUs support SSE2. > + * > + * This file is compiled using GCC 4.8+'s C++ front end to allow the use of > + * the target attribute, selecting the fastest code path based on runtime > + * detection of CPU capabilities. > + */ > + > +#ifdef __x86_64__ > +#ifdef __cplusplus > + > +#include "rsync.h" > + > +#ifdef ENABLE_SSE2 > + > +#include <immintrin.h> > + > +/* Compatibility functions to let our SSSE3 algorithm run on SSE2 */ > + > +__attribute__ ((target ("sse2"))) static inline __m128i > sse_load_si128(__m128i_u* buf) { > + return _mm_loadu_si128(buf); > +} > + > +__attribute__ ((target ("ssse3"))) static inline __m128i > sse_load_si128(__m128i_u* buf) { > + return _mm_lddqu_si128(buf); // same as loadu on all but the > oldest SSSE3 CPUs > +} > + > +__attribute__ ((target ("sse2"))) static inline __m128i > sse_interleave_odd_epi16(__m128i a, __m128i b) { > + return _mm_packs_epi32( > + _mm_srai_epi32(a, 16), > + _mm_srai_epi32(b, 16) > + ); > +} > + > +__attribute__ ((target ("sse2"))) static inline __m128i > sse_interleave_even_epi16(__m128i a, __m128i b) { > + return sse_interleave_odd_epi16( > + _mm_slli_si128(a, 2), > + _mm_slli_si128(b, 2) > + ); > +} > + > +__attribute__ ((target ("sse2"))) static inline __m128i > sse_mulu_odd_epi8(__m128i a, __m128i b) { > + return _mm_mullo_epi16( > + _mm_srli_epi16(a, 8), > + _mm_srai_epi16(b, 8) > + ); > +} > + > +__attribute__ ((target ("sse2"))) static inline __m128i > sse_mulu_even_epi8(__m128i a, __m128i b) { > + return _mm_mullo_epi16( > + _mm_and_si128(a, _mm_set1_epi16(0xFF)), > + _mm_srai_epi16(_mm_slli_si128(b, 1), 8) > + ); > +} > + > +__attribute__ ((target ("sse2"))) static inline __m128i > sse_hadds_epi16(__m128i a, __m128i b) { > + return _mm_adds_epi16( > + sse_interleave_even_epi16(a, b), > + sse_interleave_odd_epi16(a, b) > + ); > +} > + > +__attribute__ ((target ("ssse3"))) static inline __m128i > sse_hadds_epi16(__m128i a, __m128i b) { > + return _mm_hadds_epi16(a, b); > +} > + > +__attribute__ ((target ("sse2"))) static inline __m128i > sse_maddubs_epi16(__m128i a, __m128i b) { > + return _mm_adds_epi16( > + sse_mulu_even_epi8(a, b), > + sse_mulu_odd_epi8(a, b) > + ); > +} > + > +__attribute__ ((target ("ssse3"))) static inline __m128i > sse_maddubs_epi16(__m128i a, __m128i b) { > + return _mm_maddubs_epi16(a, b); > +} > + > +__attribute__ ((target ("default"))) static inline __m128i > sse_load_si128(__m128i_u* buf) { } > +__attribute__ ((target ("default"))) static inline __m128i > sse_interleave_odd_epi16(__m128i a, __m128i b) { } > +__attribute__ ((target ("default"))) static inline __m128i > sse_interleave_even_epi16(__m128i a, __m128i b) { } > +__attribute__ ((target ("default"))) static inline __m128i > sse_mulu_odd_epi8(__m128i a, __m128i b) { } > +__attribute__ ((target ("default"))) static inline __m128i > sse_mulu_even_epi8(__m128i a, __m128i b) { } > +__attribute__ ((target ("default"))) static inline __m128i > sse_hadds_epi16(__m128i a, __m128i b) { } > +__attribute__ ((target ("default"))) static inline __m128i > sse_maddubs_epi16(__m128i a, __m128i b) { } > + > +/* > + a simple 32 bit checksum that can be updated from either end > + (inspired by Mark Adler's Adler-32 checksum) > + */ > +/* > + Original loop per 4 bytes: > + s2 += 4*(s1 + buf[i]) + 3*buf[i+1] + 2*buf[i+2] + buf[i+3] + > 10*CHAR_OFFSET; > + s1 += buf[i] + buf[i+1] + buf[i+2] + buf[i+3] + 4*CHAR_OFFSET; > + > + SSE2/SSSE3 loop per 32 bytes: > + int16 t1[8]; > + int16 t2[8]; > + for (int j = 0; j < 8; j++) { > + t1[j] = buf[j*4 + i] + buf[j*4 + i+1] + buf[j*4 + i+2] + buf[j*4 + i+3]; > + t2[j] = 4*buf[j*4 + i] + 3*buf[j*4 + i+1] + 2*buf[j*4 + i+2] + > buf[j*4 + i+3]; > + } > + s2 += 32*s1 + > + 28*t1[0] + 24*t1[1] + 20*t1[2] + 16*t1[3] + 12*t1[4] + > 8*t1[5] + 4*t1[6] + > + t2[0] + t2[1] + t2[2] + t2[3] + t2[4] + t2[5] + t2[6] + t2[7] + > + ((16+32+48+64+80+96) + 8)*CHAR_OFFSET; > + s1 += t1[0] + t1[1] + t1[2] + t1[3] + t1[4] + t1[5] + t1[6] + t1[7] + > + 32*CHAR_OFFSET; > + */ > +/* > + Both sse2 and ssse3 targets must be specified here for the optimizer to > + fully unroll into two separate functions for each, or it will decide which > + version of other functions (such as sse_maddubs_epi16) to call every loop > + iteration instead of properly inlining them, negating any performance gain. > + */ > +__attribute__ ((target ("sse2", "ssse3"))) static inline uint32 > get_checksum1_accel(char *buf1, int32 len) { > + int32 i; > + uint32 s1, s2; > + schar *buf = (schar *)buf1; > + > + i = s1 = s2 = 0; > + if (len > 32) { > + const char mul_t1_buf[16] = {28, 0, 24, 0, 20, 0, 16, 0, 12, > 0, 8, 0, 4, 0, 0, 0}; > + __m128i mul_t1 = sse_load_si128((__m128i_u*)mul_t1_buf); > + __m128i ss1 = _mm_setzero_si128(); > + __m128i ss2 = _mm_setzero_si128(); > + > + for (i = 0; i < (len-32); i+=32) { > + // Load ... 2*[int8*16] > + __m128i in8_1 = sse_load_si128((__m128i_u*)&buf[i]); > + __m128i in8_2 = sse_load_si128((__m128i_u*)&buf[i + 16]); > + > + // (1*buf[i] + 1*buf[i+1]), (1*buf[i+2], 1*buf[i+3]), ... > 2*[int16*8] > + // Fastest, even though multiply by 1 > + __m128i mul_one = _mm_set1_epi8(1); > + __m128i add16_1 = sse_maddubs_epi16(mul_one, in8_1); > + __m128i add16_2 = sse_maddubs_epi16(mul_one, in8_2); > + > + // (4*buf[i] + 3*buf[i+1]), (2*buf[i+2], buf[i+3]), ... 2*[int16*8] > + __m128i mul_const = _mm_set1_epi32(4 + (3 << 8) + (2 << > 16) + (1 << 24)); > + __m128i mul_add16_1 = sse_maddubs_epi16(mul_const, in8_1); > + __m128i mul_add16_2 = sse_maddubs_epi16(mul_const, in8_2); > + > + // s2 += 32*s1 > + ss2 = _mm_add_epi32(ss2, _mm_slli_epi32(ss1, 5)); > + > + // [sum(t1[0]..t1[6]), X, X, X] [int32*4]; faster than > multiple _mm_hadds_epi16 > + // Shifting left, then shifting right again and shuffling > (rather than just > + // shifting right as with mul32 below) to cheaply end up > with the correct sign > + // extension as we go from int16 to int32. > + __m128i sum_add32 = _mm_add_epi16(add16_1, add16_2); > + sum_add32 = _mm_add_epi16(sum_add32, _mm_slli_si128(sum_add32, 2)); > + sum_add32 = _mm_add_epi16(sum_add32, _mm_slli_si128(sum_add32, 4)); > + sum_add32 = _mm_add_epi16(sum_add32, _mm_slli_si128(sum_add32, 8)); > + sum_add32 = _mm_srai_epi32(sum_add32, 16); > + sum_add32 = _mm_shuffle_epi32(sum_add32, 3); > + > + // [sum(t2[0]..t2[6]), X, X, X] [int32*4]; faster than > multiple _mm_hadds_epi16 > + __m128i sum_mul_add32 = _mm_add_epi16(mul_add16_1, mul_add16_2); > + sum_mul_add32 = _mm_add_epi16(sum_mul_add32, > _mm_slli_si128(sum_mul_add32, 2)); > + sum_mul_add32 = _mm_add_epi16(sum_mul_add32, > _mm_slli_si128(sum_mul_add32, 4)); > + sum_mul_add32 = _mm_add_epi16(sum_mul_add32, > _mm_slli_si128(sum_mul_add32, 8)); > + sum_mul_add32 = _mm_srai_epi32(sum_mul_add32, 16); > + sum_mul_add32 = _mm_shuffle_epi32(sum_mul_add32, 3); > + > + // s1 += t1[0] + t1[1] + t1[2] + t1[3] + t1[4] + t1[5] + > t1[6] + t1[7] > + ss1 = _mm_add_epi32(ss1, sum_add32); > + > + // s2 += t2[0] + t2[1] + t2[2] + t2[3] + t2[4] + t2[5] + > t2[6] + t2[7] > + ss2 = _mm_add_epi32(ss2, sum_mul_add32); > + > + // [t1[0], t1[1], ...] [int16*8] > + // We could've combined this with generating sum_add32 > above and save one _mm_add_epi16, > + // but benchmarking shows that as being slower > + __m128i add16 = sse_hadds_epi16(add16_1, add16_2); > + > + // [t1[0], t1[1], ...] -> [t1[0]*28 + t1[1]*24, ...] [int32*4] > + __m128i mul32 = _mm_madd_epi16(add16, mul_t1); > + > + // [sum(mul32), X, X, X] [int32*4]; faster than multiple > _mm_hadd_epi32 > + mul32 = _mm_add_epi32(mul32, _mm_srli_si128(mul32, 4)); > + mul32 = _mm_add_epi32(mul32, _mm_srli_si128(mul32, 8)); > + > + // s2 += 28*t1[0] + 24*t1[1] + 20*t1[2] + 16*t1[3] + > 12*t1[4] + 8*t1[5] + 4*t1[6] > + ss2 = _mm_add_epi32(ss2, mul32); > + > +#if CHAR_OFFSET != 0 > + // s1 += 32*CHAR_OFFSET > + __m128i char_offset_multiplier = _mm_set1_epi32(32 * CHAR_OFFSET); > + ss1 = _mm_add_epi32(ss1, char_offset_multiplier); > + > + // s2 += 528*CHAR_OFFSET > + char_offset_multiplier = _mm_set1_epi32(528 * CHAR_OFFSET); > + ss2 = _mm_add_epi32(ss2, char_offset_multiplier); > +#endif > + } > + > + int32 x[4] = {0}; > + _mm_store_si128((__m128i_u*)x, ss1); > + s1 = x[0]; > + _mm_store_si128((__m128i_u*)x, ss2); > + s2 = x[0]; > + } > + for (; i < (len-4); i+=4) { > + s2 += 4*(s1 + buf[i]) + 3*buf[i+1] + 2*buf[i+2] + buf[i+3] + > 10*CHAR_OFFSET; > + s1 += (buf[i] + buf[i+1] + buf[i+2] + buf[i+3] + 4*CHAR_OFFSET); > + } > + for (; i < len; i++) { > + s1 += (buf[i]+CHAR_OFFSET); s2 += s1; > + } > + return (s1 & 0xffff) + (s2 << 16); > +} > + > +/* > + a simple 32 bit checksum that can be updated from either end > + (inspired by Mark Adler's Adler-32 checksum) > + */ > +/* > + Pure copy/paste from get_checksum1 @ checksum.c. We cannot use the target > + attribute there as that requires cpp. > + */ > +__attribute__ ((target ("default"))) static inline uint32 > get_checksum1_accel(char *buf1, int32 len) > +{ > + int32 i; > + uint32 s1, s2; > + schar *buf = (schar *)buf1; > + > + s1 = s2 = 0; > + for (i = 0; i < (len-4); i+=4) { > + s2 += 4*(s1 + buf[i]) + 3*buf[i+1] + 2*buf[i+2] + buf[i+3] + 10*CHAR_OFFSET; > + s1 += (buf[i+0] + buf[i+1] + buf[i+2] + buf[i+3] + 4*CHAR_OFFSET); > + } > + for (; i < len; i++) { > + s1 += (buf[i]+CHAR_OFFSET); s2 += s1; > + } > + return (s1 & 0xffff) + (s2 << 16); > +} > + > +extern "C" { > + > +/* > + C doesn't support the target attribute, so here's another wrapper > +*/ > +uint32 get_checksum1(char *buf1, int32 len) { > + return get_checksum1_accel(buf1, len); > +} > + > +} > +#endif /* ENABLE_SSE2 */ > +#endif /* __cplusplus */ > +#endif /* __x86_64__ */ > \ No newline at end of file > diff --git a/configure.ac b/configure.ac > index d4e95fb8..ff0c0902 100644 > --- a/configure.ac > +++ b/configure.ac > @@ -41,6 +41,7 @@ fi > dnl Checks for programs. > AC_PROG_CC > AC_PROG_CPP > +AC_PROG_CXX > AC_PROG_EGREP > AC_PROG_INSTALL > AC_PROG_MKDIR_P > @@ -164,6 +165,27 @@ fi > AC_DEFINE_UNQUOTED(NOBODY_USER, "nobody", [unprivileged user--e.g. nobody]) > AC_DEFINE_UNQUOTED(NOBODY_GROUP, "$NOBODY_GROUP", [unprivileged group > for unprivileged user]) > > +# SSE2+ optimizations on x86-64 require g++ support > +AC_MSG_CHECKING([whether to enable SSE2+ optimizations]) > +AC_ARG_ENABLE(sse2, > + AS_HELP_STRING([--disable-sse2],[disable SSE2+ optimizations (req. > g++ and x86-64)])) > + > +if test x"$enable_sse2" != x"no" && test x"$build_cpu" = x"x86_64" && > test x"$CXX" = x"g++"; then > + AC_MSG_RESULT([yes]) > + AC_DEFINE(ENABLE_SSE2, 1, [Define to 1 to enable SSE2+ optimizations > (requires g++ and x86-64)]) > + CXXOBJ="$CXXOBJ checksum_sse2.o" > +else > + AC_MSG_RESULT(no) > +fi > + > +# We only use g++ for its target attribute dispatching, disable > unneeded bulky features > +if test x"$CXXOBJ" != x""; then > + CXXUSED=yes > + CXXFLAGS="$CXXFLAGS -fno-exceptions -fno-rtti" > +fi > +AC_SUBST(CXXUSED) > +AC_SUBST(CXXOBJ) > + > # arrgh. libc in some old debian version screwed up the largefile > # stuff, getting byte range locking wrong > AC_CACHE_CHECK([for broken largefile support],rsync_cv_HAVE_BROKEN_LARGEFILE,[ > diff --git a/mkproto.awk b/mkproto.awk > index ab97d54f..3a26eb51 100644 > --- a/mkproto.awk > +++ b/mkproto.awk > @@ -3,6 +3,7 @@ > BEGIN { > while ((getline i < "proto.h") > 0) old_protos = old_protos ? > old_protos "\n" i : i > protos = "/* This file is automatically generated with \"make > proto\". DO NOT EDIT */\n" > + protos = protos "#ifndef __cplusplus\n" > } > > inheader { > @@ -34,6 +35,7 @@ inheader { > } > > END { > + protos = protos "\n\n" "#endif\n" > if (old_protos != protos) print protos > "proto.h" > printf "" > "proto.h-tstamp" > } >
Jorrit Jongma
2020-May-20 08:50 UTC
[PATCHv2] SSE2/SSSE3 optimized version of get_checksum1() for x86-64
I haven't found a way to control GCC's target selector at runtime (though in theory it could be possible), so switching between specific optimizations (SSE2 vs SSSE3) may prove difficult or require additional duplication of code. Bypassing the optimizations completely in an all-or-nothing way should be possible relatively easily, though. On Wed, May 20, 2020 at 9:18 AM Roland <devzero at web.de> wrote:> > would it perhaps make sense to have a "--disable-sse2/3" commandline > switch in rsync, too - at least for some timeframe until this is > considered "rock solid" ? > > i dislike having automatic cpu feature switching code in a tool which > needs to be reliable for me, this new optimization may have issues - and > without such switch it can't be easily workarounded without replacing > the binary/package. > > regards > roland
Wayne Davison
2020-May-21 21:42 UTC
[PATCHv2] SSE2/SSSE3 optimized version of get_checksum1() for x86-64
On Tue, May 19, 2020 at 7:29 AM Jorrit Jongma via rsync < rsync at lists.samba.org> wrote:> I've read up some more on the subject, and it seems the proper way to do > this with GCC is g++ and target attributes. I've refactored the patch that > way, and it indeed uses SSSE3 automatically on supporting CPUs, regardless > of the build host, so this should be ideal both for home builders and > distros. >Very cool stuff! Sounds like this should be a nice improvement for x86 systems. I've tweaked your patch just a bit and changed it to where it is disabled by default unless configured with --enable-sse2, just to be extra cautious. Once it gets some validation testing we can change that to be enabled by default. Thanks! As for xxhash support, the current version of that patch is in the patches git repo (it hasn't been merged yet): https://git.samba.org/?p=rsync-patches.git;a=blob_plain;f=xxhash.diff;hb=6f3c2cd839ccbae8dc74222f9f8a60aef0156d43 ..wayne.. -------------- next part -------------- An HTML attachment was scrubbed... URL: <http://lists.samba.org/pipermail/rsync/attachments/20200521/114aed7a/attachment.htm>
Jorrit Jongma
2020-May-22 14:49 UTC
[PATCHv3] SSE2/SSSE3/AVX2 optimized version of get_checksum1() for x86-64
Here's the third (and final, barring bugs) version, which builds _on top_ of the patch already committed by Wayne. This version also adds AVX2 support and rearranges defines and filenames in a way that seems more logical and future-proof to me. Real-world tests shows about an 8% network transfer time reduction of large files existing at both ends yet slightly modified, with the receiving end being a slow CPU. @ GitHub: https://github.com/Chainfire/rsync/commit/9f888c8721342c9a02f46029fc257892b91e642f https://github.com/Chainfire/rsync/commit/9f888c8721342c9a02f46029fc257892b91e642f.patch -->From 9f888c8721342c9a02f46029fc257892b91e642f Mon Sep 17 00:00:00 2001From: Jorrit Jongma <git at jongma.org> Date: Fri, 22 May 2020 13:03:55 +0200 Subject: [PATCH] AVX2 optimized version of get_checksum1() for x86-64 Additionally restructures build switches and defines from SSE2 to SIMD, to allow potential reuse should patches become available with SIMD instructions for other processor architectures. --- Makefile.in | 9 +- checksum.c | 2 +- checksum_simd_x86_64.cpp | 414 +++++++++++++++++++++++++++++++++++++++ checksum_sse2.cpp | 289 --------------------------- configure.ac | 29 ++- options.c | 10 +- 6 files changed, 446 insertions(+), 307 deletions(-) create mode 100644 checksum_simd_x86_64.cpp delete mode 100644 checksum_sse2.cpp diff --git a/Makefile.in b/Makefile.in index 30869294..af5aaa56 100644 --- a/Makefile.in +++ b/Makefile.in @@ -17,6 +17,7 @@ CXXFLAGS=@CXXFLAGS@ EXEEXT=@EXEEXT@ LDFLAGS=@LDFLAGS@ LIBOBJDIR=lib/ +SIMD=@SIMD@ INSTALLCMD=@INSTALL@ INSTALLMAN=@INSTALL@ @@ -31,6 +32,11 @@ VERSION=@RSYNC_VERSION@ .SUFFIXES: .SUFFIXES: .c .o +CXXOBJ+ifeq ($(SIMD),x86-64) + CXXOBJ=checksum_simd_x86_64.o +endif + GENFILES=configure.sh aclocal.m4 config.h.in proto.h proto.h-tstamp rsync.1 rsync-ssl.1 rsyncd.conf.5 HEADERS=byteorder.h config.h errcode.h proto.h rsync.h ifuncs.h itypes.h inums.h \ lib/pool_alloc.h @@ -43,7 +49,6 @@ OBJS1=flist.o rsync.o generator.o receiver.o cleanup.o sender.o exclude.o \ OBJS2=options.o io.o compat.o hlink.o token.o uidlist.o socket.o hashtable.o \ fileio.o batch.o clientname.o chmod.o acls.o xattrs.o OBJS3=progress.o pipe.o -CXXOBJ=@CXXOBJ@ DAEMON_OBJ = params.o loadparm.o clientserver.o access.o connection.o authenticate.o popt_OBJS=popt/findme.o popt/popt.o popt/poptconfig.o \ popt/popthelp.o popt/poptparse.o @@ -118,7 +123,7 @@ rounding.h: rounding.c rsync.h proto.h fi @rm -f rounding.out -checksum_sse2.o: checksum_sse2.cpp +checksum_simd_x86_64.o: checksum_simd_x86_64.cpp $(CXX) $(CXXFLAGS) $(CPPFLAGS) -c -o $@ $< tls$(EXEEXT): $(TLS_OBJ) diff --git a/checksum.c b/checksum.c index 8698543d..5954a872 100644 --- a/checksum.c +++ b/checksum.c @@ -99,7 +99,7 @@ int canonical_checksum(int csum_type) return csum_type >= CSUM_MD4 ? 1 : 0; } -#ifndef ENABLE_SSE2 /* See checksum_sse2.cpp for the SSE2 version. */ +#ifndef HAVE_SIMD // see checksum_simd_*.cpp /* a simple 32 bit checksum that can be updated from either end (inspired by Mark Adler's Adler-32 checksum) diff --git a/checksum_simd_x86_64.cpp b/checksum_simd_x86_64.cpp new file mode 100644 index 00000000..cfbc8adf --- /dev/null +++ b/checksum_simd_x86_64.cpp @@ -0,0 +1,414 @@ +/* + * SSE2/SSSE3/AVX2-optimized routines to support checksumming of bytes. + * + * Copyright (C) 1996 Andrew Tridgell + * Copyright (C) 1996 Paul Mackerras + * Copyright (C) 2004-2020 Wayne Davison + * Copyright (C) 2020 Jorrit Jongma + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 3 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License along + * with this program; if not, visit the http://fsf.org website. + */ +/* + * Optimization target for get_checksum1() was the Intel Atom D2700, the + * slowest CPU in the test set and the most likely to be CPU limited during + * transfers. The combination of intrinsics was chosen specifically for the + * most gain on that CPU, other combinations were occasionally slightly + * faster on the others. + * + * While on more modern CPUs transfers are less likely to be CPU limited + * (at least by this specific function), lower CPU usage is always better. + * Improvements may still be seen when matching chunks from NVMe storage + * even on newer CPUs. + * + * Benchmarks (in MB/s) C SSE2 SSSE3 AVX2 + * - Intel Atom D2700 550 750 1000 N/A + * - Intel i7-7700hq 1850 2550 4050 6200 + * - AMD ThreadRipper 2950x 2900 5600 8950 8100 + * + * Curiously the AMD is slower with AVX2 than SSSE3, while the Intel is + * significantly faster. AVX2 is kept because it's more likely to relieve + * the bottleneck on the slower CPU. + * + * This optimization for get_checksum1() is intentionally limited to x86-64 + * as no 32-bit CPU was available for testing. As 32-bit CPUs only have half + * the available xmm registers, this optimized version may not be faster than + * the pure C version anyway. Note that all x86-64 CPUs support at least SSE2. + * + * This file is compiled using GCC 4.8+'s C++ front end to allow the use of + * the target attribute, selecting the fastest code path based on runtime + * detection of CPU capabilities. + */ + +#ifdef __x86_64__ +#ifdef __cplusplus + +#include "rsync.h" + +#ifdef HAVE_SIMD + +#include <immintrin.h> + +/* Compatibility functions to let our SSSE3 algorithm run on SSE2 */ + +__attribute__ ((target("sse2"))) static inline __m128i sse_interleave_odd_epi16(__m128i a, __m128i b) { + return _mm_packs_epi32( + _mm_srai_epi32(a, 16), + _mm_srai_epi32(b, 16) + ); +} + +__attribute__ ((target("sse2"))) static inline __m128i sse_interleave_even_epi16(__m128i a, __m128i b) { + return sse_interleave_odd_epi16( + _mm_slli_si128(a, 2), + _mm_slli_si128(b, 2) + ); +} + +__attribute__ ((target("sse2"))) static inline __m128i sse_mulu_odd_epi8(__m128i a, __m128i b) { + return _mm_mullo_epi16( + _mm_srli_epi16(a, 8), + _mm_srai_epi16(b, 8) + ); +} + +__attribute__ ((target("sse2"))) static inline __m128i sse_mulu_even_epi8(__m128i a, __m128i b) { + return _mm_mullo_epi16( + _mm_and_si128(a, _mm_set1_epi16(0xFF)), + _mm_srai_epi16(_mm_slli_si128(b, 1), 8) + ); +} + +__attribute__ ((target("sse2"))) static inline __m128i sse_hadds_epi16(__m128i a, __m128i b) { + return _mm_adds_epi16( + sse_interleave_even_epi16(a, b), + sse_interleave_odd_epi16(a, b) + ); +} + +__attribute__ ((target("ssse3"))) static inline __m128i sse_hadds_epi16(__m128i a, __m128i b) { + return _mm_hadds_epi16(a, b); +} + +__attribute__ ((target("sse2"))) static inline __m128i sse_maddubs_epi16(__m128i a, __m128i b) { + return _mm_adds_epi16( + sse_mulu_even_epi8(a, b), + sse_mulu_odd_epi8(a, b) + ); +} + +__attribute__ ((target("ssse3"))) static inline __m128i sse_maddubs_epi16(__m128i a, __m128i b) { + return _mm_maddubs_epi16(a, b); +} + +__attribute__ ((target("default"))) static inline __m128i sse_interleave_odd_epi16(__m128i a, __m128i b) { } +__attribute__ ((target("default"))) static inline __m128i sse_interleave_even_epi16(__m128i a, __m128i b) { } +__attribute__ ((target("default"))) static inline __m128i sse_mulu_odd_epi8(__m128i a, __m128i b) { } +__attribute__ ((target("default"))) static inline __m128i sse_mulu_even_epi8(__m128i a, __m128i b) { } +__attribute__ ((target("default"))) static inline __m128i sse_hadds_epi16(__m128i a, __m128i b) { } +__attribute__ ((target("default"))) static inline __m128i sse_maddubs_epi16(__m128i a, __m128i b) { } + +/* + Original loop per 4 bytes: + s2 += 4*(s1 + buf[i]) + 3*buf[i+1] + 2*buf[i+2] + buf[i+3] + 10*CHAR_OFFSET; + s1 += buf[i] + buf[i+1] + buf[i+2] + buf[i+3] + 4*CHAR_OFFSET; + + SSE2/SSSE3 loop per 32 bytes: + int16 t1[8]; + int16 t2[8]; + for (int j = 0; j < 8; j++) { + t1[j] = buf[j*4 + i] + buf[j*4 + i+1] + buf[j*4 + i+2] + buf[j*4 + i+3]; + t2[j] = 4*buf[j*4 + i] + 3*buf[j*4 + i+1] + 2*buf[j*4 + i+2] + buf[j*4 + i+3]; + } + s2 += 32*s1 + (uint32)( + 28*t1[0] + 24*t1[1] + 20*t1[2] + 16*t1[3] + 12*t1[4] + 8*t1[5] + 4*t1[6] + + t2[0] + t2[1] + t2[2] + t2[3] + t2[4] + t2[5] + t2[6] + t2[7] + ) + 528*CHAR_OFFSET; + s1 += (uint32)(t1[0] + t1[1] + t1[2] + t1[3] + t1[4] + t1[5] + t1[6] + t1[7]) + + 32*CHAR_OFFSET; + */ +/* + Both sse2 and ssse3 targets must be specified here or we lose (a lot) of + performance, possibly due to not unrolling+inlining the called targeted + functions. + */ +__attribute__ ((target("sse2", "ssse3"))) static int32 get_checksum1_sse2_32(schar* buf, int32 len, int32 i, uint32* ps1, uint32* ps2) { + if (len > 32) { + int aligned = ((uintptr_t)buf & 15) == 0; + + uint32 x[4] = {0}; + x[0] = *ps1; + __m128i ss1 = _mm_loadu_si128((__m128i_u*)x); + x[0] = *ps2; + __m128i ss2 = _mm_loadu_si128((__m128i_u*)x); + + const int16 mul_t1_buf[8] = {28, 24, 20, 16, 12, 8, 4, 0}; + __m128i mul_t1 = _mm_loadu_si128((__m128i_u*)mul_t1_buf); + + for (; i < (len-32); i+=32) { + // Load ... 2*[int8*16] + // SSSE3 has _mm_lqqdu_si128, but this requires another + // target function for each SSE2 and SSSE3 loads. For reasons + // unknown (to me) we lose about 10% performance on some CPUs if + // we do that right here. We just use _mm_loadu_si128 as for all + // but a handful of specific old CPUs they are synonymous, and + // take the 1-5% hit on those specific CPUs where it isn't. + __m128i in8_1, in8_2; + if (!aligned) { + in8_1 = _mm_loadu_si128((__m128i_u*)&buf[i]); + in8_2 = _mm_loadu_si128((__m128i_u*)&buf[i + 16]); + } else { + in8_1 = _mm_load_si128((__m128i_u*)&buf[i]); + in8_2 = _mm_load_si128((__m128i_u*)&buf[i + 16]); + } + + // (1*buf[i] + 1*buf[i+1]), (1*buf[i+2], 1*buf[i+3]), ... 2*[int16*8] + // Fastest, even though multiply by 1 + __m128i mul_one = _mm_set1_epi8(1); + __m128i add16_1 = sse_maddubs_epi16(mul_one, in8_1); + __m128i add16_2 = sse_maddubs_epi16(mul_one, in8_2); + + // (4*buf[i] + 3*buf[i+1]), (2*buf[i+2], buf[i+3]), ... 2*[int16*8] + __m128i mul_const = _mm_set1_epi32(4 + (3 << 8) + (2 << 16) + (1 << 24)); + __m128i mul_add16_1 = sse_maddubs_epi16(mul_const, in8_1); + __m128i mul_add16_2 = sse_maddubs_epi16(mul_const, in8_2); + + // s2 += 32*s1 + ss2 = _mm_add_epi32(ss2, _mm_slli_epi32(ss1, 5)); + + // [sum(t1[0]..t1[7]), X, X, X] [int32*4]; faster than multiple _mm_hadds_epi16 + // Shifting left, then shifting right again and shuffling (rather than just + // shifting right as with mul32 below) to cheaply end up with the correct sign + // extension as we go from int16 to int32. + __m128i sum_add32 = _mm_add_epi16(add16_1, add16_2); + sum_add32 = _mm_add_epi16(sum_add32, _mm_slli_si128(sum_add32, 2)); + sum_add32 = _mm_add_epi16(sum_add32, _mm_slli_si128(sum_add32, 4)); + sum_add32 = _mm_add_epi16(sum_add32, _mm_slli_si128(sum_add32, 8)); + sum_add32 = _mm_srai_epi32(sum_add32, 16); + sum_add32 = _mm_shuffle_epi32(sum_add32, 3); + + // [sum(t2[0]..t2[7]), X, X, X] [int32*4]; faster than multiple _mm_hadds_epi16 + __m128i sum_mul_add32 = _mm_add_epi16(mul_add16_1, mul_add16_2); + sum_mul_add32 = _mm_add_epi16(sum_mul_add32, _mm_slli_si128(sum_mul_add32, 2)); + sum_mul_add32 = _mm_add_epi16(sum_mul_add32, _mm_slli_si128(sum_mul_add32, 4)); + sum_mul_add32 = _mm_add_epi16(sum_mul_add32, _mm_slli_si128(sum_mul_add32, 8)); + sum_mul_add32 = _mm_srai_epi32(sum_mul_add32, 16); + sum_mul_add32 = _mm_shuffle_epi32(sum_mul_add32, 3); + + // s1 += t1[0] + t1[1] + t1[2] + t1[3] + t1[4] + t1[5] + t1[6] + t1[7] + ss1 = _mm_add_epi32(ss1, sum_add32); + + // s2 += t2[0] + t2[1] + t2[2] + t2[3] + t2[4] + t2[5] + t2[6] + t2[7] + ss2 = _mm_add_epi32(ss2, sum_mul_add32); + + // [t1[0] + t1[1], t1[2] + t1[3] ...] [int16*8] + // We could've combined this with generating sum_add32 above and + // save an instruction but benchmarking shows that as being slower + __m128i add16 = sse_hadds_epi16(add16_1, add16_2); + + // [t1[0], t1[1], ...] -> [t1[0]*28 + t1[1]*24, ...] [int32*4] + __m128i mul32 = _mm_madd_epi16(add16, mul_t1); + + // [sum(mul32), X, X, X] [int32*4]; faster than multiple _mm_hadd_epi32 + mul32 = _mm_add_epi32(mul32, _mm_srli_si128(mul32, 4)); + mul32 = _mm_add_epi32(mul32, _mm_srli_si128(mul32, 8)); + + // s2 += 28*t1[0] + 24*t1[1] + 20*t1[2] + 16*t1[3] + 12*t1[4] + 8*t1[5] + 4*t1[6] + ss2 = _mm_add_epi32(ss2, mul32); + +#if CHAR_OFFSET != 0 + // s1 += 32*CHAR_OFFSET + __m128i char_offset_multiplier = _mm_set1_epi32(32 * CHAR_OFFSET); + ss1 = _mm_add_epi32(ss1, char_offset_multiplier); + + // s2 += 528*CHAR_OFFSET + char_offset_multiplier = _mm_set1_epi32(528 * CHAR_OFFSET); + ss2 = _mm_add_epi32(ss2, char_offset_multiplier); +#endif + } + + _mm_store_si128((__m128i_u*)x, ss1); + *ps1 = x[0]; + _mm_store_si128((__m128i_u*)x, ss2); + *ps2 = x[0]; + } + return i; +} + +/* + AVX2 loop per 64 bytes: + int16 t1[16]; + int16 t2[16]; + for (int j = 0; j < 16; j++) { + t1[j] = buf[j*4 + i] + buf[j*4 + i+1] + buf[j*4 + i+2] + buf[j*4 + i+3]; + t2[j] = 4*buf[j*4 + i] + 3*buf[j*4 + i+1] + 2*buf[j*4 + i+2] + buf[j*4 + i+3]; + } + s2 += 64*s1 + (uint32)( + 60*t1[0] + 56*t1[1] + 52*t1[2] + 48*t1[3] + 44*t1[4] + 40*t1[5] + 36*t1[6] + 32*t1[7] + 28*t1[8] + 24*t1[9] + 20*t1[10] + 16*t1[11] + 12*t1[12] + 8*t1[13] + 4*t1[14] + + t2[0] + t2[1] + t2[2] + t2[3] + t2[4] + t2[5] + t2[6] + t2[7] + t2[8] + t2[9] + t2[10] + t2[11] + t2[12] + t2[13] + t2[14] + t2[15] + ) + 2080*CHAR_OFFSET; + s1 += (uint32)(t1[0] + t1[1] + t1[2] + t1[3] + t1[4] + t1[5] + t1[6] + t1[7] + t1[8] + t1[9] + t1[10] + t1[11] + t1[12] + t1[13] + t1[14] + t1[15]) + + 64*CHAR_OFFSET; + */ +__attribute__ ((target("avx2"))) static int32 get_checksum1_avx2_64(schar* buf, int32 len, int32 i, uint32* ps1, uint32* ps2) { + if (len > 64) { + // Instructions reshuffled compared to SSE2 for slightly better performance + int aligned = ((uintptr_t)buf & 31) == 0; + + uint32 x[8] = {0}; + x[0] = *ps1; + __m256i ss1 = _mm256_lddqu_si256((__m256i_u*)x); + x[0] = *ps2; + __m256i ss2 = _mm256_lddqu_si256((__m256i_u*)x); + + // The order gets shuffled compared to SSE2 + const int16 mul_t1_buf[16] = {60, 56, 52, 48, 28, 24, 20, 16, 44, 40, 36, 32, 12, 8, 4, 0}; + __m256i mul_t1 = _mm256_lddqu_si256((__m256i_u*)mul_t1_buf); + + for (; i < (len-64); i+=64) { + // Load ... 2*[int8*32] + __m256i in8_1, in8_2; + if (!aligned) { + in8_1 = _mm256_lddqu_si256((__m256i_u*)&buf[i]); + in8_2 = _mm256_lddqu_si256((__m256i_u*)&buf[i + 32]); + } else { + in8_1 = _mm256_load_si256((__m256i_u*)&buf[i]); + in8_2 = _mm256_load_si256((__m256i_u*)&buf[i + 32]); + } + + // Prefetch for next loops. This has no observable effect on the + // tested AMD but makes as much as 20% difference on the Intel. + // Curiously that same Intel sees no benefit from this with SSE2 + // or SSSE3. + _mm_prefetch(&buf[i + 64], _MM_HINT_T0); + _mm_prefetch(&buf[i + 96], _MM_HINT_T0); + _mm_prefetch(&buf[i + 128], _MM_HINT_T0); + _mm_prefetch(&buf[i + 160], _MM_HINT_T0); + + // (1*buf[i] + 1*buf[i+1]), (1*buf[i+2], 1*buf[i+3]), ... 2*[int16*16] + // Fastest, even though multiply by 1 + __m256i mul_one = _mm256_set1_epi8(1); + __m256i add16_1 = _mm256_maddubs_epi16(mul_one, in8_1); + __m256i add16_2 = _mm256_maddubs_epi16(mul_one, in8_2); + + // (4*buf[i] + 3*buf[i+1]), (2*buf[i+2], buf[i+3]), ... 2*[int16*16] + __m256i mul_const = _mm256_set1_epi32(4 + (3 << 8) + (2 << 16) + (1 << 24)); + __m256i mul_add16_1 = _mm256_maddubs_epi16(mul_const, in8_1); + __m256i mul_add16_2 = _mm256_maddubs_epi16(mul_const, in8_2); + + // s2 += 64*s1 + ss2 = _mm256_add_epi32(ss2, _mm256_slli_epi32(ss1, 6)); + + // [t1[0] + t1[1], t1[2] + t1[3] ...] [int16*16] + __m256i add16 = _mm256_hadds_epi16(add16_1, add16_2); + + // [t1[0], t1[1], ...] -> [t1[0]*60 + t1[1]*56, ...] [int32*8] + __m256i mul32 = _mm256_madd_epi16(add16, mul_t1); + + // [sum(t1[0]..t1[15]), X, X, X, X, X, X, X] [int32*8] + __m256i sum_add32 = _mm256_add_epi16(add16_1, add16_2); + sum_add32 = _mm256_add_epi16(sum_add32, _mm256_permute4x64_epi64(sum_add32, 2 + (3 << 2) + (0 << 4) + (1 << 6))); + sum_add32 = _mm256_add_epi16(sum_add32, _mm256_slli_si256(sum_add32, 2)); + sum_add32 = _mm256_add_epi16(sum_add32, _mm256_slli_si256(sum_add32, 4)); + sum_add32 = _mm256_add_epi16(sum_add32, _mm256_slli_si256(sum_add32, 8)); + sum_add32 = _mm256_srai_epi32(sum_add32, 16); + sum_add32 = _mm256_shuffle_epi32(sum_add32, 3); + + // s1 += t1[0] + t1[1] + t1[2] + t1[3] + t1[4] + t1[5] + t1[6] + t1[7] + t1[8] + t1[9] + t1[10] + t1[11] + t1[12] + t1[13] + t1[14] + t1[15] + ss1 = _mm256_add_epi32(ss1, sum_add32); + + // [sum(t2[0]..t2[15]), X, X, X, X, X, X, X] [int32*8] + __m256i sum_mul_add32 = _mm256_add_epi16(mul_add16_1, mul_add16_2); + sum_mul_add32 = _mm256_add_epi16(sum_mul_add32, _mm256_permute4x64_epi64(sum_mul_add32, 2 + (3 << 2) + (0 << 4) + (1 << 6))); + sum_mul_add32 = _mm256_add_epi16(sum_mul_add32, _mm256_slli_si256(sum_mul_add32, 2)); + sum_mul_add32 = _mm256_add_epi16(sum_mul_add32, _mm256_slli_si256(sum_mul_add32, 4)); + sum_mul_add32 = _mm256_add_epi16(sum_mul_add32, _mm256_slli_si256(sum_mul_add32, 8)); + sum_mul_add32 = _mm256_srai_epi32(sum_mul_add32, 16); + sum_mul_add32 = _mm256_shuffle_epi32(sum_mul_add32, 3); + + // s2 += t2[0] + t2[1] + t2[2] + t2[3] + t2[4] + t2[5] + t2[6] + t2[7] + t2[8] + t2[9] + t2[10] + t2[11] + t2[12] + t2[13] + t2[14] + t2[15] + ss2 = _mm256_add_epi32(ss2, sum_mul_add32); + + // [sum(mul32), X, X, X, X, X, X, X] [int32*8] + mul32 = _mm256_add_epi32(mul32, _mm256_permute2x128_si256(mul32, mul32, 1)); + mul32 = _mm256_add_epi32(mul32, _mm256_srli_si256(mul32, 4)); + mul32 = _mm256_add_epi32(mul32, _mm256_srli_si256(mul32, 8)); + + // s2 += 60*t1[0] + 56*t1[1] + 52*t1[2] + 48*t1[3] + 44*t1[4] + 40*t1[5] + 36*t1[6] + 32*t1[7] + 28*t1[8] + 24*t1[9] + 20*t1[10] + 16*t1[11] + 12*t1[12] + 8*t1[13] + 4*t1[14] + ss2 = _mm256_add_epi32(ss2, mul32); + +#if CHAR_OFFSET != 0 + // s1 += 64*CHAR_OFFSET + __m256i char_offset_multiplier = _mm256_set1_epi32(64 * CHAR_OFFSET); + ss1 = _mm256_add_epi32(ss1, char_offset_multiplier); + + // s2 += 2080*CHAR_OFFSET + char_offset_multiplier = _mm256_set1_epi32(2080 * CHAR_OFFSET); + ss2 = _mm256_add_epi32(ss2, char_offset_multiplier); +#endif + } + + _mm256_store_si256((__m256i_u*)x, ss1); + *ps1 = x[0]; + _mm256_store_si256((__m256i_u*)x, ss2); + *ps2 = x[0]; + } + return i; +} + +__attribute__ ((target("default"))) static int32 get_checksum1_avx2_64(schar* buf, int32 len, int32 i, uint32* ps1, uint32* ps2) { + return i; +} + +__attribute__ ((target("default"))) static int32 get_checksum1_sse2_32(schar* buf, int32 len, int32 i, uint32* ps1, uint32* ps2) { + return i; +} + +static inline int32 get_checksum1_default_1(schar* buf, int32 len, int32 i, uint32* ps1, uint32* ps2) { + uint32 s1 = *ps1; + uint32 s2 = *ps2; + for (; i < (len-4); i+=4) { + s2 += 4*(s1 + buf[i]) + 3*buf[i+1] + 2*buf[i+2] + buf[i+3] + 10*CHAR_OFFSET; + s1 += (buf[i+0] + buf[i+1] + buf[i+2] + buf[i+3] + 4*CHAR_OFFSET); + } + for (; i < len; i++) { + s1 += (buf[i]+CHAR_OFFSET); s2 += s1; + } + *ps1 = s1; + *ps2 = s2; + return i; +} + +extern "C" { + +uint32 get_checksum1(char *buf1, int32 len) { + int32 i = 0; + uint32 s1 = 0; + uint32 s2 = 0; + + // multiples of 64 bytes using AVX2 (if available) + i = get_checksum1_avx2_64((schar*)buf1, len, i, &s1, &s2); + + // multiples of 32 bytes using SSE2/SSSE3 (if available) + i = get_checksum1_sse2_32((schar*)buf1, len, i, &s1, &s2); + + // whatever is left + i = get_checksum1_default_1((schar*)buf1, len, i, &s1, &s2); + + return (s1 & 0xffff) + (s2 << 16); +} + +} +#endif /* HAVE_SIMD */ +#endif /* __cplusplus */ +#endif /* __x86_64__ */ diff --git a/checksum_sse2.cpp b/checksum_sse2.cpp deleted file mode 100644 index 515596f0..00000000 --- a/checksum_sse2.cpp +++ /dev/null @@ -1,289 +0,0 @@ -/* - * SSE2/SSSE3-optimized routines to support checksumming of bytes. - * - * Copyright (C) 1996 Andrew Tridgell - * Copyright (C) 1996 Paul Mackerras - * Copyright (C) 2004-2020 Wayne Davison - * Copyright (C) 2020 Jorrit Jongma - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 3 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License along - * with this program; if not, visit the http://fsf.org website. - */ -/* - * Optimization target for get_checksum1() was the Intel Atom D2700, the - * slowest CPU in the test set and the most likely to be CPU limited during - * transfers. The combination of intrinsics was chosen specifically for the - * most gain on that CPU, other combinations were occasionally slightly - * faster on the others. - * - * While on more modern CPUs transfers are less likely to be CPU limited, - * lower CPU usage is always better. Improvements may still be seen when - * matching chunks from NVMe storage even on newer CPUs. - * - * Benchmarks C SSE2 SSSE3 - * - Intel Atom D2700 550 MB/s 750 MB/s 1000 MB/s - * - Intel i7-7700hq 1850 MB/s 2550 MB/s 4050 MB/s - * - AMD ThreadRipper 2950x 2900 MB/s 5600 MB/s 8950 MB/s - * - * This optimization for get_checksum1() is intentionally limited to x86-64 - * as no 32-bit CPU was available for testing. As 32-bit CPUs only have half - * the available xmm registers, this optimized version may not be faster than - * the pure C version anyway. Note that all x86-64 CPUs support SSE2. - * - * This file is compiled using GCC 4.8+'s C++ front end to allow the use of - * the target attribute, selecting the fastest code path based on runtime - * detection of CPU capabilities. - */ - -#ifdef __x86_64__ -#ifdef __cplusplus - -#include "rsync.h" - -#ifdef ENABLE_SSE2 - -#include <immintrin.h> - -/* Compatibility functions to let our SSSE3 algorithm run on SSE2 */ - -__attribute__ ((target ("sse2"))) static inline __m128i sse_load_si128(__m128i_u* buf) { - return _mm_loadu_si128(buf); -} - -__attribute__ ((target ("ssse3"))) static inline __m128i sse_load_si128(__m128i_u* buf) { - return _mm_lddqu_si128(buf); // same as loadu on all but the oldest SSSE3 CPUs -} - -__attribute__ ((target ("sse2"))) static inline __m128i sse_interleave_odd_epi16(__m128i a, __m128i b) { - return _mm_packs_epi32( - _mm_srai_epi32(a, 16), - _mm_srai_epi32(b, 16) - ); -} - -__attribute__ ((target ("sse2"))) static inline __m128i sse_interleave_even_epi16(__m128i a, __m128i b) { - return sse_interleave_odd_epi16( - _mm_slli_si128(a, 2), - _mm_slli_si128(b, 2) - ); -} - -__attribute__ ((target ("sse2"))) static inline __m128i sse_mulu_odd_epi8(__m128i a, __m128i b) { - return _mm_mullo_epi16( - _mm_srli_epi16(a, 8), - _mm_srai_epi16(b, 8) - ); -} - -__attribute__ ((target ("sse2"))) static inline __m128i sse_mulu_even_epi8(__m128i a, __m128i b) { - return _mm_mullo_epi16( - _mm_and_si128(a, _mm_set1_epi16(0xFF)), - _mm_srai_epi16(_mm_slli_si128(b, 1), 8) - ); -} - -__attribute__ ((target ("sse2"))) static inline __m128i sse_hadds_epi16(__m128i a, __m128i b) { - return _mm_adds_epi16( - sse_interleave_even_epi16(a, b), - sse_interleave_odd_epi16(a, b) - ); -} - -__attribute__ ((target ("ssse3"))) static inline __m128i sse_hadds_epi16(__m128i a, __m128i b) { - return _mm_hadds_epi16(a, b); -} - -__attribute__ ((target ("sse2"))) static inline __m128i sse_maddubs_epi16(__m128i a, __m128i b) { - return _mm_adds_epi16( - sse_mulu_even_epi8(a, b), - sse_mulu_odd_epi8(a, b) - ); -} - -__attribute__ ((target ("ssse3"))) static inline __m128i sse_maddubs_epi16(__m128i a, __m128i b) { - return _mm_maddubs_epi16(a, b); -} - -__attribute__ ((target ("default"))) static inline __m128i sse_load_si128(__m128i_u* buf) { } -__attribute__ ((target ("default"))) static inline __m128i sse_interleave_odd_epi16(__m128i a, __m128i b) { } -__attribute__ ((target ("default"))) static inline __m128i sse_interleave_even_epi16(__m128i a, __m128i b) { } -__attribute__ ((target ("default"))) static inline __m128i sse_mulu_odd_epi8(__m128i a, __m128i b) { } -__attribute__ ((target ("default"))) static inline __m128i sse_mulu_even_epi8(__m128i a, __m128i b) { } -__attribute__ ((target ("default"))) static inline __m128i sse_hadds_epi16(__m128i a, __m128i b) { } -__attribute__ ((target ("default"))) static inline __m128i sse_maddubs_epi16(__m128i a, __m128i b) { } - -/* - a simple 32 bit checksum that can be updated from either end - (inspired by Mark Adler's Adler-32 checksum) - */ -/* - Original loop per 4 bytes: - s2 += 4*(s1 + buf[i]) + 3*buf[i+1] + 2*buf[i+2] + buf[i+3] + 10*CHAR_OFFSET; - s1 += buf[i] + buf[i+1] + buf[i+2] + buf[i+3] + 4*CHAR_OFFSET; - - SSE2/SSSE3 loop per 32 bytes: - int16 t1[8]; - int16 t2[8]; - for (int j = 0; j < 8; j++) { - t1[j] = buf[j*4 + i] + buf[j*4 + i+1] + buf[j*4 + i+2] + buf[j*4 + i+3]; - t2[j] = 4*buf[j*4 + i] + 3*buf[j*4 + i+1] + 2*buf[j*4 + i+2] + buf[j*4 + i+3]; - } - s2 += 32*s1 + - 28*t1[0] + 24*t1[1] + 20*t1[2] + 16*t1[3] + 12*t1[4] + 8*t1[5] + 4*t1[6] + - t2[0] + t2[1] + t2[2] + t2[3] + t2[4] + t2[5] + t2[6] + t2[7] + - ((16+32+48+64+80+96) + 8)*CHAR_OFFSET; - s1 += t1[0] + t1[1] + t1[2] + t1[3] + t1[4] + t1[5] + t1[6] + t1[7] + - 32*CHAR_OFFSET; - */ -/* - Both sse2 and ssse3 targets must be specified here for the optimizer to - fully unroll into two separate functions for each, or it will decide which - version of other functions (such as sse_maddubs_epi16) to call every loop - iteration instead of properly inlining them, negating any performance gain. - */ -__attribute__ ((target ("sse2", "ssse3"))) static inline uint32 get_checksum1_accel(char *buf1, int32 len) { - int32 i; - uint32 s1, s2; - schar *buf = (schar *)buf1; - - i = s1 = s2 = 0; - if (len > 32) { - const char mul_t1_buf[16] = {28, 0, 24, 0, 20, 0, 16, 0, 12, 0, 8, 0, 4, 0, 0, 0}; - __m128i mul_t1 = sse_load_si128((__m128i_u*)mul_t1_buf); - __m128i ss1 = _mm_setzero_si128(); - __m128i ss2 = _mm_setzero_si128(); - - for (i = 0; i < (len-32); i+=32) { - // Load ... 2*[int8*16] - __m128i in8_1 = sse_load_si128((__m128i_u*)&buf[i]); - __m128i in8_2 = sse_load_si128((__m128i_u*)&buf[i + 16]); - - // (1*buf[i] + 1*buf[i+1]), (1*buf[i+2], 1*buf[i+3]), ... 2*[int16*8] - // Fastest, even though multiply by 1 - __m128i mul_one = _mm_set1_epi8(1); - __m128i add16_1 = sse_maddubs_epi16(mul_one, in8_1); - __m128i add16_2 = sse_maddubs_epi16(mul_one, in8_2); - - // (4*buf[i] + 3*buf[i+1]), (2*buf[i+2], buf[i+3]), ... 2*[int16*8] - __m128i mul_const = _mm_set1_epi32(4 + (3 << 8) + (2 << 16) + (1 << 24)); - __m128i mul_add16_1 = sse_maddubs_epi16(mul_const, in8_1); - __m128i mul_add16_2 = sse_maddubs_epi16(mul_const, in8_2); - - // s2 += 32*s1 - ss2 = _mm_add_epi32(ss2, _mm_slli_epi32(ss1, 5)); - - // [sum(t1[0]..t1[6]), X, X, X] [int32*4]; faster than multiple _mm_hadds_epi16 - // Shifting left, then shifting right again and shuffling (rather than just - // shifting right as with mul32 below) to cheaply end up with the correct sign - // extension as we go from int16 to int32. - __m128i sum_add32 = _mm_add_epi16(add16_1, add16_2); - sum_add32 = _mm_add_epi16(sum_add32, _mm_slli_si128(sum_add32, 2)); - sum_add32 = _mm_add_epi16(sum_add32, _mm_slli_si128(sum_add32, 4)); - sum_add32 = _mm_add_epi16(sum_add32, _mm_slli_si128(sum_add32, 8)); - sum_add32 = _mm_srai_epi32(sum_add32, 16); - sum_add32 = _mm_shuffle_epi32(sum_add32, 3); - - // [sum(t2[0]..t2[6]), X, X, X] [int32*4]; faster than multiple _mm_hadds_epi16 - __m128i sum_mul_add32 = _mm_add_epi16(mul_add16_1, mul_add16_2); - sum_mul_add32 = _mm_add_epi16(sum_mul_add32, _mm_slli_si128(sum_mul_add32, 2)); - sum_mul_add32 = _mm_add_epi16(sum_mul_add32, _mm_slli_si128(sum_mul_add32, 4)); - sum_mul_add32 = _mm_add_epi16(sum_mul_add32, _mm_slli_si128(sum_mul_add32, 8)); - sum_mul_add32 = _mm_srai_epi32(sum_mul_add32, 16); - sum_mul_add32 = _mm_shuffle_epi32(sum_mul_add32, 3); - - // s1 += t1[0] + t1[1] + t1[2] + t1[3] + t1[4] + t1[5] + t1[6] + t1[7] - ss1 = _mm_add_epi32(ss1, sum_add32); - - // s2 += t2[0] + t2[1] + t2[2] + t2[3] + t2[4] + t2[5] + t2[6] + t2[7] - ss2 = _mm_add_epi32(ss2, sum_mul_add32); - - // [t1[0], t1[1], ...] [int16*8] - // We could've combined this with generating sum_add32 above and save one _mm_add_epi16, - // but benchmarking shows that as being slower - __m128i add16 = sse_hadds_epi16(add16_1, add16_2); - - // [t1[0], t1[1], ...] -> [t1[0]*28 + t1[1]*24, ...] [int32*4] - __m128i mul32 = _mm_madd_epi16(add16, mul_t1); - - // [sum(mul32), X, X, X] [int32*4]; faster than multiple _mm_hadd_epi32 - mul32 = _mm_add_epi32(mul32, _mm_srli_si128(mul32, 4)); - mul32 = _mm_add_epi32(mul32, _mm_srli_si128(mul32, 8)); - - // s2 += 28*t1[0] + 24*t1[1] + 20*t1[2] + 16*t1[3] + 12*t1[4] + 8*t1[5] + 4*t1[6] - ss2 = _mm_add_epi32(ss2, mul32); - -#if CHAR_OFFSET != 0 - // s1 += 32*CHAR_OFFSET - __m128i char_offset_multiplier = _mm_set1_epi32(32 * CHAR_OFFSET); - ss1 = _mm_add_epi32(ss1, char_offset_multiplier); - - // s2 += 528*CHAR_OFFSET - char_offset_multiplier = _mm_set1_epi32(528 * CHAR_OFFSET); - ss2 = _mm_add_epi32(ss2, char_offset_multiplier); -#endif - } - - int32 x[4] = {0}; - _mm_store_si128((__m128i_u*)x, ss1); - s1 = x[0]; - _mm_store_si128((__m128i_u*)x, ss2); - s2 = x[0]; - } - for (; i < (len-4); i+=4) { - s2 += 4*(s1 + buf[i]) + 3*buf[i+1] + 2*buf[i+2] + buf[i+3] + 10*CHAR_OFFSET; - s1 += (buf[i] + buf[i+1] + buf[i+2] + buf[i+3] + 4*CHAR_OFFSET); - } - for (; i < len; i++) { - s1 += (buf[i]+CHAR_OFFSET); s2 += s1; - } - return (s1 & 0xffff) + (s2 << 16); -} - -/* - a simple 32 bit checksum that can be updated from either end - (inspired by Mark Adler's Adler-32 checksum) - */ -/* - Pure copy/paste from get_checksum1 @ checksum.c. We cannot use the target - attribute there as that requires cpp. - */ -__attribute__ ((target ("default"))) static inline uint32 get_checksum1_accel(char *buf1, int32 len) -{ - int32 i; - uint32 s1, s2; - schar *buf = (schar *)buf1; - - s1 = s2 = 0; - for (i = 0; i < (len-4); i+=4) { - s2 += 4*(s1 + buf[i]) + 3*buf[i+1] + 2*buf[i+2] + buf[i+3] + 10*CHAR_OFFSET; - s1 += (buf[i+0] + buf[i+1] + buf[i+2] + buf[i+3] + 4*CHAR_OFFSET); - } - for (; i < len; i++) { - s1 += (buf[i]+CHAR_OFFSET); s2 += s1; - } - return (s1 & 0xffff) + (s2 << 16); -} - -extern "C" { - -/* - C doesn't support the target attribute, so here's another wrapper -*/ -uint32 get_checksum1(char *buf1, int32 len) { - return get_checksum1_accel(buf1, len); -} - -} -#endif /* ENABLE_SSE2 */ -#endif /* __cplusplus */ -#endif /* __x86_64__ */ diff --git a/configure.ac b/configure.ac index 76c08dc5..f5e155b2 100644 --- a/configure.ac +++ b/configure.ac @@ -165,24 +165,33 @@ fi AC_DEFINE_UNQUOTED(NOBODY_USER, "nobody", [unprivileged user--e.g. nobody]) AC_DEFINE_UNQUOTED(NOBODY_GROUP, "$NOBODY_GROUP", [unprivileged group for unprivileged user]) -# SSE2+ optimizations on x86-64 require g++ support -AC_MSG_CHECKING([whether to enable SSE2+ optimizations]) -AC_ARG_ENABLE(sse2, - AS_HELP_STRING([--disable-sse2],[disable SSE2+ optimizations (req. g++ and x86-64)])) +# SIMD optimizations +SIMD -if test x"$enable_sse2" = x"yes" && test x"$build_cpu" = x"x86_64" && test x"$CXX" = x"g++"; then - AC_MSG_RESULT([yes]) - AC_DEFINE(ENABLE_SSE2, 1, [Define to 1 to enable SSE2+ optimizations (requires g++ and x86-64)]) - CXXOBJ="$CXXOBJ checksum_sse2.o" -else +AC_MSG_CHECKING([whether to enable SIMD optimizations]) +AC_ARG_ENABLE(simd, + AS_HELP_STRING([--enable-simd],[enable SIMD optimizations])) + +if test x"$enable_simd" = x"yes"; then + # For x86-64 SIMD, g++ is also required + if test x"$build_cpu" = x"x86_64" && test x"$CXX" = x"g++"; then + SIMD=x86-64 + fi +fi + +if test x"$SIMD" = x""; then AC_MSG_RESULT(no) +else + AC_MSG_RESULT([yes ($SIMD)]) + AC_DEFINE(HAVE_SIMD, 1, [Define to 1 to enable SIMD optimizations]) fi +AC_SUBST(SIMD) + # We only use g++ for its target attribute dispatching, disable unneeded bulky features if test x"$CXXOBJ" != x""; then CXXFLAGS="$CXXFLAGS -fno-exceptions -fno-rtti" fi -AC_SUBST(CXXOBJ) # arrgh. libc in some old debian version screwed up the largefile # stuff, getting byte range locking wrong diff --git a/options.c b/options.c index ca3b97e1..742ff532 100644 --- a/options.c +++ b/options.c @@ -578,7 +578,7 @@ static void print_rsync_version(enum logcode f) char const *links = "no "; char const *iconv = "no "; char const *ipv6 = "no "; - char const *sse2 = "no "; + char const *simd = "no "; STRUCT_STAT *dumstat; #if SUBPROTOCOL_VERSION != 0 @@ -615,8 +615,8 @@ static void print_rsync_version(enum logcode f) #ifdef CAN_SET_SYMLINK_TIMES symtimes = ""; #endif -#ifdef ENABLE_SSE2 - sse2 = ""; +#ifdef HAVE_SIMD + simd = ""; #endif rprintf(f, "%s version %s protocol version %d%s\n", @@ -631,8 +631,8 @@ static void print_rsync_version(enum logcode f) (int)(sizeof (int64) * 8)); rprintf(f, " %ssocketpairs, %shardlinks, %ssymlinks, %sIPv6, batchfiles, %sinplace,\n", got_socketpair, hardlinks, links, ipv6, have_inplace); - rprintf(f, " %sappend, %sACLs, %sxattrs, %siconv, %ssymtimes, %sprealloc, %ssse2\n", - have_inplace, acls, xattrs, iconv, symtimes, prealloc, sse2); + rprintf(f, " %sappend, %sACLs, %sxattrs, %siconv, %ssymtimes, %sprealloc, %ssimd\n", + have_inplace, acls, xattrs, iconv, symtimes, prealloc, simd); #ifdef MAINTAINER_MODE rprintf(f, "Panic Action: \"%s\"\n", get_panic_action());
Apparently Analagous Threads
- [PATCH] SSE2/SSSE3 optimized version of get_checksum1() for x86-64
- [PATCH] SSE2/SSSE3 optimized version of get_checksum1() for x86-64
- [PATCH] SSE2/SSSE3 optimized version of get_checksum1() for x86-64
- [PATCHv2] SSE2/SSSE3 optimized version of get_checksum1() for x86-64
- [PATCH] SSE2/SSSE3 optimized version of get_checksum1() for x86-64