Hello, I have a set of data coming from a dissociation experiment (protein/ligand). Since the data is required to calculate the constant of dissociation (Kd) of this pair, I am looking for a way to fit a Hill function to the data. I have seen that the package `mosaic` (https://rpubs.com/dtkaplan/646) provides such approach with `fitModel`. However, I fail to find the proper starting points and get the error: ``` Error in nlsModel(formula, mf, start, wts, scaleOffset = scOff, nDcentral = nDcntr) : singular gradient matrix at initial parameter estimates ``` How can I run this package? How can I estimate the starting values for the function, considering that the data is decreasing rather than increasing (so it is probably an inverse Hill function)? Thank you ``` df = data.frame(Response = c(890.72, 895.46, 895.63, 894.72, 895.49, 893.59, 892.53, 895.06, 897.21, 889.27, 876.05, 857.96, 862.02, 858.36, 890.94, 890.8, 887.22, 888.91, 890.83, 889.92, 891.76, 890.32, 886.35, 878.11, 866.57, 859.04, 863.64, 880.16, 884.15, 879.57, 878.89, 882.27, 881.59, 880.98, 881.45, 876.19, 868.32, 859.16, 850.53, 853.21, 859.34, 859.73, 861.19), Dose = c(0.0000000015, 0.000000003, 0.000000006, 0.000000012, 0.000000024, 0.000000048, 0.000000095, 0.00000018, 0.00000038, 0.00000078, 0.0000015, 0.000013, 0.000025, 0.00005, 0.0000000015, 0.000000003, 0.000000006, 0.000000012, 0.000000024, 0.000000048, 0.000000095, 0.00000018, 0.00000038, 0.00000078, 0.0000015, 0.000025, 0.00005, 0.0000000015, 0.000000003, 0.000000006, 0.000000012, 0.000000024, 0.000000048, 0.000000095, 0.00000018, 0.00000038, 0.00000078, 0.0000015, 0.000003, 0.000006, 0.000013, 0.000025, 0.00005) ) plot(Response~log10(Dose), df) nls(Response ~ ( (exp((a+b*Dose))) / (1+exp(-(a+b*Dose)) )), data=df) library(mosaic) fitModel(Response ~ A * Dose^2/(theta^2 + Dose^2), data = df, start = list(A = 100, theta = -4)) ```