Hi R Helpers, I have been looking for an example of how to execute different dplyr mutate statements on the same dataframe in a single step. I show how to do what I want to do by going from df0 to df1 to df2 to df3 by applying a mutate statement to each dataframe in sequence, but I would like to know if there is a way to execute this in a single step; so simply go from df0 to df1 while executing all the transformations. See example below. Guidance would be appreciated. --John J. Sparks, Ph.D. library(dplyr) df0<-structure(list(SeqNum = c(1L, 2L, 3L, 4L, 5L, 6L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 18L, 19L, 21L, 22L, 23L), MOSTYP = c(37L, 41L, 41L, 13L, 3L, 27L, 37L, 37L, 15L, 14L, 13L, 37L, 4L, 27L, 37L, 26L, 17L, 37L, 37L, 17L), MGEMOM = c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 1L), MGODRK = c(3L, 2L, 2L, 3L, 4L, 2L, 2L, 2L, 3L, 4L, 3L, 2L, 3L, 1L, 2L, 3L, 4L, 4L, 3L, 3L), MOSHOO = c(7L, 7L, 7L, 2L, 9L, 4L, 7L, 7L, 2L, 2L, 2L, 7L, 9L, 4L, 7L, 4L, 2L, 7L, 7L, 2L), MRELGE = c(0L, 1L, 0L, 2L, 1L, 0L, 0L, 0L, 3L, 1L, 1L, 1L, 0L, 0L, 0L, 0L, 2L, 0L, 0L, 1L), MSKB2 = c(5L, 4L, 4L, 3L, 4L, 5L, 7L, 1L, 5L, 4L, 3L, 4L, 5L, 6L, 7L, 5L, 4L, 6L, 4L, 7L), MFWEKI = c(1L, 1L, 2L, 2L, 1L, 0L, 0L, 3L, 0L, 1L, 2L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 2L, 0L), MAANTH = c(3L, 4L, 4L, 4L, 4L, 5L, 2L, 6L, 2L, 4L, 4L, 4L, 4L, 2L, 2L, 4L, 3L, 3L, 3L, 2L), MHHUUR = c(2L, 2L, 4L, 2L, 2L, 3L, 0L, 3L, 2L, 2L, 2L, 3L, 1L, 6L, 0L, 2L, 2L, 0L, 2L, 2L), MSKA = c(1L, 0L, 4L, 2L, 2L, 3L, 0L, 3L, 2L, 0L, 2L, 3L, 1L, 5L, 0L, 0L, 1L, 0L, 0L, 1L), MAUT2 = c(2L, 4L, 4L, 3L, 4L, 5L, 5L, 3L, 2L, 3L, 3L, 4L, 4L, 3L, 5L, 2L, 3L, 3L, 2L, 3L), MFALLE = c(1L, 0L, 0L, 3L, 5L, 0L, 0L, 0L, 0L, 4L, 1L, 1L, 2L, 2L, 0L, 2L, 5L, 0L, 0L, 3L), MGEMLE = c(1L, 0L, 0L, 0L, 4L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 3L, 2L, 0L), MAUT1 = c(2L, 5L, 7L, 3L, 0L, 4L, 2L, 1L, 3L, 9L, 5L, 3L, 2L, 4L, 2L, 1L, 3L, 0L, 4L, 2L), MINKGE = c(2L, 4L, 2L, 2L, 0L, 2L, 2L, 1L, 3L, 0L, 1L, 4L, 2L, 2L, 2L, 5L, 1L, 0L, 3L, 1L), MOPLHO = c(1L, 0L, 0L, 0L, 0L, 2L, 2L, 1L, 2L, 0L, 0L, 1L, 0L, 0L, 2L, 0L, 0L, 0L, 0L, 0L), MGODPR = c(1L, 2L, 2L, 0L, 1L, 3L, 2L, 3L, 2L, 1L, 2L, 3L, 0L, 3L, 2L, 2L, 2L, 0L, 2L, 1L), MAUT0 = c(8L, 6L, 9L, 7L, 5L, 9L, 6L, 7L, 6L, 5L, 4L, 7L, 8L, 5L, 6L, 7L, 5L, 9L, 9L, 5L), MSKB1 = c(0L, 2L, 4L, 1L, 0L, 5L, 2L, 7L, 2L, 0L, 3L, 3L, 3L, 4L, 2L, 0L, 2L, 3L, 3L, 1L), MSKC = c(4L, 5L, 3L, 4L, 6L, 3L, 3L, 2L, 4L, 8L, 3L, 3L, 4L, 3L, 3L, 4L, 4L, 3L, 3L, 5L), PAANHA = c(0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L), PWAPAR = c(0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L), PPERSA = c(0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L), AMOTSC = c(0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L), APERSA = c(0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L), AWAPAR = c(1L, 1L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 1L, 1L, 1L, 1L, 0L, 1L, 1L), Resp = c(0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L)), row.names = c(NA, 20L), class = "data.frame") ???????????? df1<-df0 %>% mutate(across(starts_with('P'),~ifelse(.x==0, 0, ifelse(.x==1, 25, ???????????????????????????????????????????????? ifelse(.x==2, 75, ???????????????????????????????????????????????? ifelse(.x==3, 150, ???????????????????????????????????????????????? ifelse(.x==4, 350, ???????????????????????????????????????????????? ifelse(.x==5, 750, ???????????????????????????????????????????????? ifelse(.x==6, 3000, ???????????????????????????????????????????????? ifelse(.x==7, 7500, ???????????????????????????????????????????????? ifelse(.x==8,15000, ???????????????????????????????????????????????? ifelse(.x==9,30000, ???????????????????????????????????????????????? -99)))))))))))) df2<-df1 %>% mutate_at(vars(MRELGE:MSKC),~ifelse(.x==0, 0, ifelse(.x==1, 5, ??????????????????????????????????????????????????????-99))) df3<-df2 %>% mutate_at(vars(MGODRK),~ifelse(.x==0, 0, ifelse(.x==1, 5, ??????????????????????????????????????????????????????-99))) [[alternative HTML version deleted]]
CALUM POLWART
2024-Oct-17 22:58 UTC
[R] DPLYR Multiple Mutate Statements On Same DataFrame
Why can't you do: df0 |> mutate( ... ) |> mutate( ... ) |> mutate( ... ) I've simplified the code to show passing the result of the first line to the next rather than focussing on the detail. This would work with %>% as well as |> but I am anticipating that the more modern native pipe ( |> ) will become the norm in the future. BTW - mutate_at is depreciated as far as I know, so you'd be more future proof to use mutate( across( ... ) ) You can use mutate more than one thing in a single mutate df |> mutate ( surname = to.upper(surname), initial = substring(first name, 1, 1) ) is the same as: df |> mutate ( surname = to.upper(surname)) |> mutate ( initial = substring(first name, 1, 1) ) Or df |> mutate ( surname = to.upper(surname) ) -> df2 df2 |> mutate ( initial = substring(first name, 1, 1) ) On Thu, 17 Oct 2024, 22:51 Sparks, John, <jspark4 at uic.edu> wrote:> Hi R Helpers, > > I have been looking for an example of how to execute different dplyr > mutate statements on the same dataframe in a single step. I show how to do > what I want to do by going from df0 to df1 to df2 to df3 by applying a > mutate statement to each dataframe in sequence, but I would like to know if > there is a way to execute this in a single step; so simply go from df0 to > df1 while executing all the transformations. See example below. > > Guidance would be appreciated. > --John J. Sparks, Ph.D. > > library(dplyr) > df0<-structure(list(SeqNum = c(1L, 2L, 3L, 4L, 5L, 6L, 8L, 9L, 10L, > 11L, 12L, 13L, 14L, 15L, 16L, 18L, 19L, 21L, 22L, 23L), MOSTYP = c(37L, > 41L, 41L, 13L, 3L, 27L, 37L, 37L, 15L, 14L, 13L, 37L, 4L, 27L, > 37L, 26L, 17L, 37L, 37L, 17L), MGEMOM = c(1L, 1L, 1L, 1L, 1L, > 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 1L), > MGODRK = c(3L, 2L, 2L, 3L, 4L, 2L, 2L, 2L, 3L, 4L, 3L, 2L, > 3L, 1L, 2L, 3L, 4L, 4L, 3L, 3L), MOSHOO = c(7L, 7L, 7L, 2L, > 9L, 4L, 7L, 7L, 2L, 2L, 2L, 7L, 9L, 4L, 7L, 4L, 2L, 7L, 7L, > 2L), MRELGE = c(0L, 1L, 0L, 2L, 1L, 0L, 0L, 0L, 3L, 1L, 1L, > 1L, 0L, 0L, 0L, 0L, 2L, 0L, 0L, 1L), MSKB2 = c(5L, 4L, 4L, > 3L, 4L, 5L, 7L, 1L, 5L, 4L, 3L, 4L, 5L, 6L, 7L, 5L, 4L, 6L, > 4L, 7L), MFWEKI = c(1L, 1L, 2L, 2L, 1L, 0L, 0L, 3L, 0L, 1L, > 2L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 2L, 0L), MAANTH = c(3L, 4L, > 4L, 4L, 4L, 5L, 2L, 6L, 2L, 4L, 4L, 4L, 4L, 2L, 2L, 4L, 3L, > 3L, 3L, 2L), MHHUUR = c(2L, 2L, 4L, 2L, 2L, 3L, 0L, 3L, 2L, > 2L, 2L, 3L, 1L, 6L, 0L, 2L, 2L, 0L, 2L, 2L), MSKA = c(1L, > 0L, 4L, 2L, 2L, 3L, 0L, 3L, 2L, 0L, 2L, 3L, 1L, 5L, 0L, 0L, > 1L, 0L, 0L, 1L), MAUT2 = c(2L, 4L, 4L, 3L, 4L, 5L, 5L, 3L, > 2L, 3L, 3L, 4L, 4L, 3L, 5L, 2L, 3L, 3L, 2L, 3L), MFALLE = c(1L, > 0L, 0L, 3L, 5L, 0L, 0L, 0L, 0L, 4L, 1L, 1L, 2L, 2L, 0L, 2L, > 5L, 0L, 0L, 3L), MGEMLE = c(1L, 0L, 0L, 0L, 4L, 0L, 0L, 0L, > 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 3L, 2L, 0L), MAUT1 = c(2L, > 5L, 7L, 3L, 0L, 4L, 2L, 1L, 3L, 9L, 5L, 3L, 2L, 4L, 2L, 1L, > 3L, 0L, 4L, 2L), MINKGE = c(2L, 4L, 2L, 2L, 0L, 2L, 2L, 1L, > 3L, 0L, 1L, 4L, 2L, 2L, 2L, 5L, 1L, 0L, 3L, 1L), MOPLHO = c(1L, > 0L, 0L, 0L, 0L, 2L, 2L, 1L, 2L, 0L, 0L, 1L, 0L, 0L, 2L, 0L, > 0L, 0L, 0L, 0L), MGODPR = c(1L, 2L, 2L, 0L, 1L, 3L, 2L, 3L, > 2L, 1L, 2L, 3L, 0L, 3L, 2L, 2L, 2L, 0L, 2L, 1L), MAUT0 = c(8L, > 6L, 9L, 7L, 5L, 9L, 6L, 7L, 6L, 5L, 4L, 7L, 8L, 5L, 6L, 7L, > 5L, 9L, 9L, 5L), MSKB1 = c(0L, 2L, 4L, 1L, 0L, 5L, 2L, 7L, > 2L, 0L, 3L, 3L, 3L, 4L, 2L, 0L, 2L, 3L, 3L, 1L), MSKC = c(4L, > 5L, 3L, 4L, 6L, 3L, 3L, 2L, 4L, 8L, 3L, 3L, 4L, 3L, 3L, 4L, > 4L, 3L, 3L, 5L), PAANHA = c(0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, > 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L), PWAPAR = c(0L, > 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, > 0L, 0L, 0L, 0L), PPERSA = c(0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, > 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L), AMOTSC = c(0L, > 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, > 0L, 0L, 0L, 0L), APERSA = c(0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, > 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L), AWAPAR = c(1L, > 1L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 1L, 1L, 1L, > 1L, 0L, 1L, 1L), Resp = c(0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, > 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L)), row.names = c(NA, > 20L), class = "data.frame") > > > df1<-df0 %>% > mutate(across(starts_with('P'),~ifelse(.x==0, 0, > ifelse(.x==1, 25, > ifelse(.x==2, 75, > ifelse(.x==3, 150, > ifelse(.x==4, 350, > ifelse(.x==5, 750, > ifelse(.x==6, 3000, > ifelse(.x==7, 7500, > ifelse(.x==8,15000, > ifelse(.x==9,30000, > -99)))))))))))) > > df2<-df1 %>% > mutate_at(vars(MRELGE:MSKC),~ifelse(.x==0, 0, > ifelse(.x==1, 5, > -99))) > df3<-df2 %>% > mutate_at(vars(MGODRK),~ifelse(.x==0, 0, > ifelse(.x==1, 5, > -99))) > > > > > [[alternative HTML version deleted]] > > ______________________________________________ > R-help at r-project.org mailing list -- To UNSUBSCRIBE and more, see > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide > https://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code. >[[alternative HTML version deleted]]
?s 22:50 de 17/10/2024, Sparks, John escreveu:> Hi R Helpers, > > I have been looking for an example of how to execute different dplyr mutate statements on the same dataframe in a single step. I show how to do what I want to do by going from df0 to df1 to df2 to df3 by applying a mutate statement to each dataframe in sequence, but I would like to know if there is a way to execute this in a single step; so simply go from df0 to df1 while executing all the transformations. See example below. > > Guidance would be appreciated. > --John J. Sparks, Ph.D. > > library(dplyr) > df0<-structure(list(SeqNum = c(1L, 2L, 3L, 4L, 5L, 6L, 8L, 9L, 10L, > 11L, 12L, 13L, 14L, 15L, 16L, 18L, 19L, 21L, 22L, 23L), MOSTYP = c(37L, > 41L, 41L, 13L, 3L, 27L, 37L, 37L, 15L, 14L, 13L, 37L, 4L, 27L, > 37L, 26L, 17L, 37L, 37L, 17L), MGEMOM = c(1L, 1L, 1L, 1L, 1L, > 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 1L), > MGODRK = c(3L, 2L, 2L, 3L, 4L, 2L, 2L, 2L, 3L, 4L, 3L, 2L, > 3L, 1L, 2L, 3L, 4L, 4L, 3L, 3L), MOSHOO = c(7L, 7L, 7L, 2L, > 9L, 4L, 7L, 7L, 2L, 2L, 2L, 7L, 9L, 4L, 7L, 4L, 2L, 7L, 7L, > 2L), MRELGE = c(0L, 1L, 0L, 2L, 1L, 0L, 0L, 0L, 3L, 1L, 1L, > 1L, 0L, 0L, 0L, 0L, 2L, 0L, 0L, 1L), MSKB2 = c(5L, 4L, 4L, > 3L, 4L, 5L, 7L, 1L, 5L, 4L, 3L, 4L, 5L, 6L, 7L, 5L, 4L, 6L, > 4L, 7L), MFWEKI = c(1L, 1L, 2L, 2L, 1L, 0L, 0L, 3L, 0L, 1L, > 2L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 2L, 0L), MAANTH = c(3L, 4L, > 4L, 4L, 4L, 5L, 2L, 6L, 2L, 4L, 4L, 4L, 4L, 2L, 2L, 4L, 3L, > 3L, 3L, 2L), MHHUUR = c(2L, 2L, 4L, 2L, 2L, 3L, 0L, 3L, 2L, > 2L, 2L, 3L, 1L, 6L, 0L, 2L, 2L, 0L, 2L, 2L), MSKA = c(1L, > 0L, 4L, 2L, 2L, 3L, 0L, 3L, 2L, 0L, 2L, 3L, 1L, 5L, 0L, 0L, > 1L, 0L, 0L, 1L), MAUT2 = c(2L, 4L, 4L, 3L, 4L, 5L, 5L, 3L, > 2L, 3L, 3L, 4L, 4L, 3L, 5L, 2L, 3L, 3L, 2L, 3L), MFALLE = c(1L, > 0L, 0L, 3L, 5L, 0L, 0L, 0L, 0L, 4L, 1L, 1L, 2L, 2L, 0L, 2L, > 5L, 0L, 0L, 3L), MGEMLE = c(1L, 0L, 0L, 0L, 4L, 0L, 0L, 0L, > 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 3L, 2L, 0L), MAUT1 = c(2L, > 5L, 7L, 3L, 0L, 4L, 2L, 1L, 3L, 9L, 5L, 3L, 2L, 4L, 2L, 1L, > 3L, 0L, 4L, 2L), MINKGE = c(2L, 4L, 2L, 2L, 0L, 2L, 2L, 1L, > 3L, 0L, 1L, 4L, 2L, 2L, 2L, 5L, 1L, 0L, 3L, 1L), MOPLHO = c(1L, > 0L, 0L, 0L, 0L, 2L, 2L, 1L, 2L, 0L, 0L, 1L, 0L, 0L, 2L, 0L, > 0L, 0L, 0L, 0L), MGODPR = c(1L, 2L, 2L, 0L, 1L, 3L, 2L, 3L, > 2L, 1L, 2L, 3L, 0L, 3L, 2L, 2L, 2L, 0L, 2L, 1L), MAUT0 = c(8L, > 6L, 9L, 7L, 5L, 9L, 6L, 7L, 6L, 5L, 4L, 7L, 8L, 5L, 6L, 7L, > 5L, 9L, 9L, 5L), MSKB1 = c(0L, 2L, 4L, 1L, 0L, 5L, 2L, 7L, > 2L, 0L, 3L, 3L, 3L, 4L, 2L, 0L, 2L, 3L, 3L, 1L), MSKC = c(4L, > 5L, 3L, 4L, 6L, 3L, 3L, 2L, 4L, 8L, 3L, 3L, 4L, 3L, 3L, 4L, > 4L, 3L, 3L, 5L), PAANHA = c(0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, > 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L), PWAPAR = c(0L, > 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, > 0L, 0L, 0L, 0L), PPERSA = c(0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, > 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L), AMOTSC = c(0L, > 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, > 0L, 0L, 0L, 0L), APERSA = c(0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, > 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L), AWAPAR = c(1L, > 1L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 1L, 1L, 1L, > 1L, 0L, 1L, 1L), Resp = c(0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, > 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L)), row.names = c(NA, > 20L), class = "data.frame") > > ???????????? > df1<-df0 %>% > mutate(across(starts_with('P'),~ifelse(.x==0, 0, > ifelse(.x==1, 25, > ???????????????????????????????????????????????? ifelse(.x==2, 75, > ???????????????????????????????????????????????? ifelse(.x==3, 150, > ???????????????????????????????????????????????? ifelse(.x==4, 350, > ???????????????????????????????????????????????? ifelse(.x==5, 750, > ???????????????????????????????????????????????? ifelse(.x==6, 3000, > ???????????????????????????????????????????????? ifelse(.x==7, 7500, > ???????????????????????????????????????????????? ifelse(.x==8,15000, > ???????????????????????????????????????????????? ifelse(.x==9,30000, > ???????????????????????????????????????????????? -99)))))))))))) > > df2<-df1 %>% > mutate_at(vars(MRELGE:MSKC),~ifelse(.x==0, 0, > ifelse(.x==1, 5, > ??????????????????????????????????????????????????????-99))) > df3<-df2 %>% > mutate_at(vars(MGODRK),~ifelse(.x==0, 0, > ifelse(.x==1, 5, > ??????????????????????????????????????????????????????-99))) > > > > > [[alternative HTML version deleted]] > > ______________________________________________ > R-help at r-project.org mailing list -- To UNSUBSCRIBE and more, see > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide https://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code.Hello, Use chained mutate() %>% mutate(). In the 2nd mutate I don't even have to pipe a third time, the final variable is changed in the same instruction. Also use mutate(across(...)), mutate_at is deprecated. And use ?case_when instead of nested ifelse's. It's much cleaner. As you can see, the result is identical to your code's result. library(dplyr) df3b <- df0 %>% mutate( across(starts_with('P'), ~case_when( .x == 0 ~ 0, .x == 1 ~ 25, .x == 2 ~ 75, .x == 3 ~ 150, .x == 4 ~ 350, .x == 5 ~ 750, .x == 6 ~ 3000, .x == 7 ~ 7500, .x == 8 ~ 15000, .x == 9 ~ 30000, TRUE ~ -99 )) ) %>% mutate( across(MRELGE:MSKC, ~case_when( .x == 0 ~ 0, .x == 1 ~ 5, TRUE ~ -99 )), MGODRK = case_when( MGODRK == 0 ~ 0, MGODRK == 1 ~ 5, TRUE ~ -99 )) identical(df3, df3b) # [1] TRUE And you can have just one mutate, as long as you respect the order the variables are changed. df3c <- df0 %>% mutate( across(starts_with('P'), ~case_when( .x == 0 ~ 0, .x == 1 ~ 25, .x == 2 ~ 75, .x == 3 ~ 150, .x == 4 ~ 350, .x == 5 ~ 750, .x == 6 ~ 3000, .x == 7 ~ 7500, .x == 8 ~ 15000, .x == 9 ~ 30000, TRUE ~ -99 )), across(MRELGE:MSKC, ~case_when( .x == 0 ~ 0, .x == 1 ~ 5, TRUE ~ -99 )), MGODRK = case_when( MGODRK == 0 ~ 0, MGODRK == 1 ~ 5, TRUE ~ -99 ) ) identical(df3, df3c) # [1] TRUE Hope this helps, Rui Barradas -- Este e-mail foi analisado pelo software antiv?rus AVG para verificar a presen?a de v?rus. www.avg.com