roslinazairimah zakaria
2024-Oct-03 13:24 UTC
[R] Time series data decomposition from by minute data
Dear all, My data is by minutes and I can see it has seasonal trend by daily and weekly. How do I decompose the minute data into daily and weekly some data:> dput(tail(dt_train,100))structure(c(11L, 11L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L,10L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 11L, 11L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 9L, 9L, 9L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 7L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L), class = c("xts", "zoo"), index = structure(c(1412622480, 1412622540, 1412622600, 1412622660, 1412622720, 1412622780, 1412622840, 1412622900, 1412622960, 1412623020, 1412623080, 1412623140, 1412623200, 1412623260, 1412623320, 1412623380, 1412623440, 1412623500, 1412623560, 1412623620, 1412623680, 1412623740, 1412623800, 1412623860, 1412623920, 1412623980, 1412624040, 1412624100, 1412624160, 1412624220, 1412624280, 1412624340, 1412624400, 1412624460, 1412624520, 1412624580, 1412624640, 1412624700, 1412624760, 1412624820, 1412624880, 1412624940, 1412625000, 1412625060, 1412625120, 1412625180, 1412625240, 1412625300, 1412625360, 1412625420, 1412625480, 1412625540, 1412625600, 1412625660, 1412625720, 1412625780, 1412625840, 1412625900, 1412625960, 1412626020, 1412626080, 1412626140, 1412626200, 1412626260, 1412626320, 1412626380, 1412626440, 1412626500, 1412626560, 1412626620, 1412626680, 1412626740, 1412626800, 1412626860, 1412626920, 1412626980, 1412627040, 1412627100, 1412627160, 1412627220, 1412627280, 1412627340, 1412627400, 1412627460, 1412627520, 1412627580, 1412627640, 1412627700, 1412627760, 1412627820, 1412627880, 1412627940, 1412628000, 1412628060, 1412628120, 1412628180, 1412628240, 1412628300, 1412628360, 1412628420), tzone = "", tclass = c("POSIXct", "POSIXt")), dim = c(100L, 1L)) I also attached the plot of training data. I tried : decompose(dt_train, type = "multiplicative", filter = NULL)Error in decompose(dt_train, type = "multiplicative", filter = NULL) : time series has no or less than 2 periods> stl(dt_train, s.window = "periodic")Error in stl(dt_train, s.window = "periodic") :series is not periodic or has less than two -- *Roslinazairimah Zakaria* *Tel: +609-5492370; Fax. No.+609-5492766* *Email: roslinazairimah at ump.edu.my <roslinazairimah at ump.edu.my>; roslinaump at gmail.com <roslinaump at gmail.com>* Faculty of Industrial Sciences & Technology University Malaysia Pahang Lebuhraya Tun Razak, 26300 Gambang, Pahang, Malaysia -------------- next part -------------- A non-text attachment was scrubbed... Name: Rplot_dt_train.pdf Type: application/pdf Size: 217119 bytes Desc: not available URL: <https://stat.ethz.ch/pipermail/r-help/attachments/20241003/02f10b2a/attachment.pdf>
Hallo you can extract POSIX object tv <- as.POSIXct(index(dt_train)) and use cut together with aggregate cut(tv, "hour") aggregate(dt_train, list(cut(tv, "hour")), mean) 2014-10-06 21:00:00 9.807692 2014-10-06 22:00:00 8.666667 Cheers. Petr ?t 3. 10. 2024 v 17:25 odes?latel roslinazairimah zakaria < roslinaump at gmail.com> napsal:> Dear all, > > My data is by minutes and I can see it has seasonal trend by daily and > weekly. How do I decompose the minute data into daily and weekly > > some data: > > > dput(tail(dt_train,100))structure(c(11L, 11L, 10L, 10L, 10L, 10L, 10L, > 10L, 10L, 10L, > 10L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, > 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, > 10L, 11L, 11L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, > 10L, 10L, 10L, 10L, 10L, 10L, 10L, 9L, 9L, 9L, 8L, 8L, 8L, 8L, > 8L, 8L, 8L, 8L, 8L, 7L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, > 8L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, > 9L, 9L, 9L), class = c("xts", "zoo"), index = structure(c(1412622480, > 1412622540, 1412622600, 1412622660, 1412622720, 1412622780, 1412622840, > 1412622900, 1412622960, 1412623020, 1412623080, 1412623140, 1412623200, > 1412623260, 1412623320, 1412623380, 1412623440, 1412623500, 1412623560, > 1412623620, 1412623680, 1412623740, 1412623800, 1412623860, 1412623920, > 1412623980, 1412624040, 1412624100, 1412624160, 1412624220, 1412624280, > 1412624340, 1412624400, 1412624460, 1412624520, 1412624580, 1412624640, > 1412624700, 1412624760, 1412624820, 1412624880, 1412624940, 1412625000, > 1412625060, 1412625120, 1412625180, 1412625240, 1412625300, 1412625360, > 1412625420, 1412625480, 1412625540, 1412625600, 1412625660, 1412625720, > 1412625780, 1412625840, 1412625900, 1412625960, 1412626020, 1412626080, > 1412626140, 1412626200, 1412626260, 1412626320, 1412626380, 1412626440, > 1412626500, 1412626560, 1412626620, 1412626680, 1412626740, 1412626800, > 1412626860, 1412626920, 1412626980, 1412627040, 1412627100, 1412627160, > 1412627220, 1412627280, 1412627340, 1412627400, 1412627460, 1412627520, > 1412627580, 1412627640, 1412627700, 1412627760, 1412627820, 1412627880, > 1412627940, 1412628000, 1412628060, 1412628120, 1412628180, 1412628240, > 1412628300, 1412628360, 1412628420), tzone = "", tclass = c("POSIXct", > "POSIXt")), dim = c(100L, 1L)) > > > I also attached the plot of training data. > > > I tried : > > decompose(dt_train, type = "multiplicative", filter = NULL)Error in > decompose(dt_train, type = "multiplicative", filter = NULL) : > time series has no or less than 2 periods > > > > stl(dt_train, s.window = "periodic")Error in stl(dt_train, s.window > "periodic") : > series is not periodic or has less than two > > > -- > *Roslinazairimah Zakaria* > *Tel: +609-5492370; Fax. No.+609-5492766* > > *Email: roslinazairimah at ump.edu.my <roslinazairimah at ump.edu.my>; > roslinaump at gmail.com <roslinaump at gmail.com>* > Faculty of Industrial Sciences & Technology > University Malaysia Pahang > Lebuhraya Tun Razak, 26300 Gambang, Pahang, Malaysia > ______________________________________________ > R-help at r-project.org mailing list -- To UNSUBSCRIBE and more, see > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide > https://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code. >[[alternative HTML version deleted]]