Hello, I'm getting an error when running your code: learner = lrn("classif.randomForest", predict_type = "prob") #> Error: Element with key 'classif.randomForest' not found in DictionaryLearner! Rui Barradas ?s 14:12 de 20/05/2022, Neha gupta escreveu:> When I run > > print(fc) > > it shows 'Inf'. It mean it doesn't calculate the bias/fairness, maybe > due to missing values. > > RF passes 1/5 metrics > Total loss : ?Inf > > > > On Fri, May 20, 2022 at 3:06 PM Rui Barradas <ruipbarradas at sapo.pt > <mailto:ruipbarradas at sapo.pt>> wrote: > > Hello, > > This is a frequent way of coding and a source for questions. > > > ifelse(test$CE == '2', 1, 0) > > > is equivalent to the much more performant > > > as.integer(test$CE == '2')? ?# or as.numeric > > > If the code still runs with errors, then those errors came from > elsewhere. > > Hope this helps, > > Rui Barradas > > > ?s 09:16 de 20/05/2022, Neha gupta escreveu: > > I am sorry.. The code is here and data is provided at the end of this > > email. > > > > data = readARFF("aho.arff") > > > > index= sample(1:nrow(data), 0.7*nrow(data)) > > train= data[index,] > > test= data[-index,] > > > > task = TaskClassif$new("data", backend = train, target = "isKilled") > > learner= lrn("classif.randomForest", predict_type = "prob") > > model= learner$train(task ) > > > > ///explainer is created to identify a bias in a particular > feature i.e. CE > > feature in this case > > > > explainer = explain_mlr3(model, > >? ? ? ? ? ? ? ? ? ? ? ? ? ?data = test[,-15], > >? ? ? ? ? ? ? ? ? ? ? ? ? ?y = as.numeric(test$isKilled)-1, > >? ? ? ? ? ? ? ? ? ? ? ? ? ?label="RF") > > prot <- ifelse(test$CE == '2', 1, 0)? ? ? ?/// Error comes here > > privileged <- '1' > > > > > > fc= fairness_check(explainer, > >? ? ? ? ? ? ? ? ? ? ? ? ? ? protected = prot, > >? ? ? ? ? ? ? ? ? ? ?privileged = privileged) > > plot(fc) > > > > > > ////////////////////////////////////////// my data is > > > > dput(test) > > structure(list(DepthTree = c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, > > 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, > > 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, > > 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, > > 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, > > 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, > > 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, > > 2, 2, 2, 1, 1, 1, 1, 2, 1), NumSubclass = c(0, 0, 0, 0, 0, 0, > > 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, > > 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, > > 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, > > 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, > > 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, > > 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, > > 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2), McCabe = c(1, 1, 1, > > 3, 3, 3, 3, 1, 2, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 1, 2, 2, 1, > > 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, > > 5, 5, 5, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 5, 5, 5, 5, 5, 5, > > 5, 5, 5, 5, 5, 5, 2, 2, 2, 2, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, > > 5, 5, 5, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 1, 1, > > 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 4, 4, 1, 1, 2, 2, 2, 2, > > 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1), LOC = c(3, > > 3, 4, 10, 10, 10, 10, 4, 5, 22, 22, 22, 22, 22, 22, 22, 22, 3, > > 3, 3, 3, 8, 8, 4, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, > > 23, 23, 23, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 8, 8, 8, > > 16, 16, 16, 16, 16, 16, 16, 16, 16, 20, 20, 20, 20, 20, 20, 20, > > 20, 20, 20, 20, 20, 7, 7, 7, 7, 18, 18, 18, 18, 18, 18, 15, 15, > > 15, 15, 15, 15, 15, 15, 6, 6, 6, 15, 15, 15, 15, 15, 15, 9, 9, > > 9, 9, 9, 9, 9, 4, 4, 3, 3, 3, 3, 4, 4, 4, 5, 8, 8, 3, 3, 3, 7, > > 7, 3, 3, 15, 15, 15, 15, 15, 15, 15, 15, 3, 3, 3, 4, 4, 4, 4, > > 8, 8, 8, 8, 4, 3), DepthNested = c(1, 1, 1, 2, 2, 2, 2, 1, 2, > > 4, 4, 4, 4, 4, 4, 4, 4, 1, 1, 1, 1, 2, 2, 1, 3, 3, 3, 3, 3, 3, > > 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, > > 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, > > 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, > > 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, > > 1, 2, 2, 2, 1, 1, 1, 2, 2, 1, 1, 3, 3, 3, 3, 3, 3, 3, 3, 1, 1, > > 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1), CA = c(1, 1, 1, 1, 1, 1, 1, > > 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, > > 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, > > 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, > > 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, > > 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, > > 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, > > 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1), CE = c(2, 2, 2, 2, 2, > > 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, > > 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, > > 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, > > 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, > > 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, > > 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, > > 0, 0, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 2, 2), Instability = c(0.667, > > 0.667, 0.667, 0.667, 0.667, 0.667, 0.667, 0.667, 0.667, 0.667, > > 0.667, 0.667, 0.667, 0.667, 0.667, 0.667, 0.667, 0.667, 0.667, > > 0.667, 0.667, 0.667, 0.667, 0.667, 0.667, 0.667, 0.667, 0.667, > > 0.667, 0.667, 0.667, 0.667, 0.667, 0.667, 0.667, 0.667, 0.667, > > 0.667, 0.667, 0.667, 0.667, 0.667, 0.667, 0.667, 0.667, 0.667, > > 0.667, 0.667, 0.667, 0.667, 0.667, 0.667, 0.667, 0.667, 0.667, > > 0.667, 0.667, 0.667, 0.667, 0.667, 0, 0, 0, 0, 0, 0, 0, 0, 0, > > 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, > > 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, > > 0, 0, 0, 0, 0.667, 0.667, 0.667, 0.667, 0.667, 0.667, 0.667, > > 0.667, 0.667, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.667, 0.667, 0.667, > > 0.667, 0.667, 0.667, 0.667, 0, 0, 0, 0, 0.667, 0.667), numCovered > = c(0, > > 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, > > 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, > > 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 123, 54, 54, > > 54, 123, 54, 54, 39, 84, 54, 54, 15, 138, 189, 189, 189, 27, > > 51, 33, 6, 27, 27, 150, 150, 150, 54, 150, 54, 54, 150, 117, > > 51, 66, 60, 15, 15, 72, 12, 45, 255, 255, 129, 129, 129, 0, 129, > > 0, 0, 6, 6, 6, 303, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 12, > > 12, 12, 18, 12, 12, 48, 12, 1557, 48, 12, 171, 0, 0, 0, 141, > > 141, 45, 141, 18, 39), operator = structure(c(4L, 13L, 13L, 1L, > > 4L, 9L, 12L, 4L, 11L, 4L, 7L, 8L, 8L, 8L, 8L, 8L, 9L, 7L, 8L, > > 8L, 6L, 7L, 8L, 4L, 1L, 2L, 3L, 4L, 7L, 8L, 8L, 8L, 8L, 8L, 9L, > > 11L, 12L, 12L, 4L, 6L, 7L, 7L, 7L, 8L, 8L, 8L, 8L, 8L, 6L, 9L, > > 9L, 4L, 7L, 7L, 8L, 8L, 8L, 8L, 8L, 10L, 1L, 1L, 1L, 7L, 7L, > > 8L, 8L, 8L, 8L, 8L, 13L, 13L, 7L, 8L, 8L, 9L, 8L, 8L, 8L, 8L, > > 9L, 10L, 1L, 4L, 4L, 6L, 7L, 8L, 8L, 8L, 9L, 10L, 10L, 7L, 8L, > > 8L, 10L, 11L, 11L, 7L, 8L, 4L, 8L, 9L, 10L, 10L, 4L, 10L, 7L, > > 7L, 10L, 6L, 8L, 8L, 10L, 8L, 8L, 10L, 9L, 8L, 10L, 7L, 7L, 13L, > > 2L, 2L, 2L, 8L, 8L, 8L, 8L, 8L, 11L, 10L, 10L, 13L, 13L, 8L, > > 8L, 8L, 6L, 7L, 8L, 10L, 13L, 13L), .Label = c("T0", "T1", "T2", > > "T3", "T4", "T5", "T6", "T7", "T8", "T9", "T10", "T11", "T12", > > "T13", "T14", "T15"), class = "factor"), methodReturn > structure(c(2L, > > 2L, 2L, 2L, 2L, 2L, 2L, 4L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, > > 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, > > 4L, 4L, 4L, 4L, 4L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, > > 2L, 2L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 2L, 2L, 2L, 2L, 2L, > > 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 4L, 4L, 4L, 4L, 4L, > > 4L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, > > 4L, 4L, 1L, 1L, 3L, 3L, 3L, 3L, 3L, 1L, 1L, 3L, 3L, 3L, 1L, 4L, > > 4L, 4L, 2L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 2L, 2L, 4L, 4L, 4L, 4L, > > 4L, 4L, 4L, 4L, 3L, 3L, 2L, 2L, 4L, 4L, 4L, 1L, 1L, 1L, 1L, 2L, > > 2L), .Label = c("I", "V", "Z", "method", "D", "[D", "[[D", "J", > > "[I", "C", "[J", "[C", "[S", "F", "[F", "[B", "S", "B", "[Z", > > "[[S", "[[B", "[[Z"), class = "factor"), numTestsCover = c(16, > > 16, 16, 15, 15, 16, 15, 4, 16, 16, 15, 16, 15, 15, 15, 15, 15, > > 3, 3, 3, 2, 16, 11, 4, 16, 3, 16, 16, 16, 16, 16, 4, 16, 16, > > 16, 4, 16, 16, 3, 3, 3, 2, 4, 3, 2, 1, 4, 1, 15, 16, 15, 2, 3, > > 2, 3, 3, 2, 2, 2, 3, 4, 5, 5, 5, 4, 5, 5, 4, 4, 5, 5, 4, 4, 4, > > 4, 4, 4, 4, 4, 2, 4, 4, 4, 4, 4, 5, 4, 5, 5, 4, 4, 4, 4, 4, 4, > > 4, 4, 3, 4, 4, 4, 6, 6, 6, 0, 6, 0, 0, 2, 2, 2, 7, 0, 0, 0, 15, > > 16, 16, 16, 15, 17, 17, 17, 15, 5, 4, 4, 4, 3, 4, 4, 3, 4, 16, > > 16, 4, 17, 0, 0, 0, 5, 5, 3, 5, 2, 3), mutantAssert = c(55, 55, > > 55, 55, 55, 55, 55, 13, 55, 55, 55, 55, 55, 55, 55, 55, 55, 9, > > 9, 9, 9, 55, 41, 13, 55, 5, 55, 55, 55, 55, 55, 13, 55, 55, 55, > > 13, 55, 55, 13, 13, 13, 8, 13, 13, 8, 4, 13, 4, 55, 55, 55, 9, > > 9, 9, 9, 9, 9, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, > > 9, 9, 9, 9, 9, 9, 5, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, > > 9, 9, 9, 6, 9, 9, 9, 14, 14, 14, 0, 14, 0, 0, 2, 2, 2, 15, 0, > > 0, 0, 55, 58, 58, 55, 55, 58, 58, 58, 55, 9, 6, 6, 6, 6, 6, 6, > > 6, 6, 55, 55, 13, 57, 0, 0, 0, 11, 11, 7, 11, 9, 9), classAssert > = c(3, > > 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, > > 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, > > 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, > > 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, > > 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 10, 10, 10, 10, > > 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 3, 3, 3, 3, 3, 3, > > 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 1, 1, 1, 1, 3, 3, > > 3, 3, 0, 0), isKilled = structure(c(2L, 2L, 2L, 2L, 2L, 2L, 2L, > > 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, > > 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, > > 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, > > 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, > > 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, > > 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, > > 1L, 2L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, > > 2L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, > > 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 1L), .Label = c("yes", > > "no"), class = "factor")), row.names = c(3L, 4L, 5L, 7L, 9L, > > 17L, 20L, 21L, 26L, 28L, 32L, 33L, 40L, 43L, 45L, 49L, 54L, 62L, > > 64L, 65L, 70L, 75L, 77L, 81L, 84L, 86L, 88L, 89L, 93L, 95L, 97L, > > 99L, 101L, 102L, 106L, 111L, 112L, 113L, 118L, 122L, 125L, 128L, > > 129L, 134L, 141L, 142L, 143L, 146L, 156L, 168L, 169L, 174L, 178L, > > 179L, 182L, 184L, 185L, 192L, 193L, 195L, 197L, 198L, 199L, 203L, > > 205L, 209L, 211L, 215L, 216L, 218L, 220L, 224L, 227L, 228L, 230L, > > 233L, 243L, 244L, 246L, 247L, 251L, 252L, 259L, 262L, 263L, 265L, > > 270L, 273L, 274L, 275L, 284L, 285L, 286L, 291L, 296L, 297L, 300L, > > 301L, 306L, 314L, 316L, 322L, 328L, 331L, 332L, 333L, 336L, 341L, > > 346L, 347L, 348L, 360L, 363L, 366L, 367L, 383L, 392L, 395L, 398L, > > 404L, 408L, 409L, 410L, 420L, 421L, 426L, 428L, 434L, 437L, 438L, > > 440L, 441L, 447L, 449L, 450L, 452L, 454L, 457L, 458L, 459L, 463L, > > 465L, 469L, 471L, 472L, 483L), class = "data.frame") > > > > On Fri, May 20, 2022 at 12:20 AM Jeff Newmiller > <jdnewmil at dcn.davis.ca.us <mailto:jdnewmil at dcn.davis.ca.us>> > > wrote: > > > >> Not reproducible. Posted HTML. > >> > >> On May 19, 2022 2:30:58 PM PDT, Neha gupta > <neha.bologna90 at gmail.com <mailto:neha.bologna90 at gmail.com>> > >> wrote: > >>> Why do I get the following error when my variable in the 'if > statement' > >> has > >>> no missing values. > >>> > >>> I check with is.na <is.na>(my variable) and it has no > missing values > >>> > >>> Error in if (fraction <= 1) { : missing value where TRUE/FALSE > needed > >>> > >>> Best regards > >>> > >>>? ? ? ? [[alternative HTML version deleted]] > >>> > >>> ______________________________________________ > >>> R-help at r-project.org <mailto:R-help at r-project.org> mailing list > -- To UNSUBSCRIBE and more, see > >>> stat.ethz.ch/mailman/listinfo/r-help > <stat.ethz.ch/mailman/listinfo/r-help> > >>> PLEASE do read the posting guide > >> R-project.org/posting-guide.html > <R-project.org/posting-guide.html> > >>> and provide commented, minimal, self-contained, reproducible code. > >> > >> -- > >> Sent from my phone. Please excuse my brevity. > >> > > > >? ? ? ?[[alternative HTML version deleted]] > > > > ______________________________________________ > > R-help at r-project.org <mailto:R-help at r-project.org> mailing list > -- To UNSUBSCRIBE and more, see > > stat.ethz.ch/mailman/listinfo/r-help > <stat.ethz.ch/mailman/listinfo/r-help> > > PLEASE do read the posting guide > R-project.org/posting-guide.html > <R-project.org/posting-guide.html> > > and provide commented, minimal, self-contained, reproducible code. >
Actually it's found in a library (mlr3extralearners). I have already imported this library in my code. On Friday, May 20, 2022, Rui Barradas <ruipbarradas at sapo.pt> wrote:> Hello, > > I'm getting an error when running your code: > > learner = lrn("classif.randomForest", predict_type = "prob") > #> Error: Element with key 'classif.randomForest' not found in > DictionaryLearner! > > Rui Barradas > > ?s 14:12 de 20/05/2022, Neha gupta escreveu: > >> When I run >> >> print(fc) >> >> it shows 'Inf'. It mean it doesn't calculate the bias/fairness, maybe due >> to missing values. >> >> RF passes 1/5 metrics >> Total loss : Inf >> >> >> >> On Fri, May 20, 2022 at 3:06 PM Rui Barradas <ruipbarradas at sapo.pt >> <mailto:ruipbarradas at sapo.pt>> wrote: >> >> Hello, >> >> This is a frequent way of coding and a source for questions. >> >> >> ifelse(test$CE == '2', 1, 0) >> >> >> is equivalent to the much more performant >> >> >> as.integer(test$CE == '2') # or as.numeric >> >> >> If the code still runs with errors, then those errors came from >> elsewhere. >> >> Hope this helps, >> >> Rui Barradas >> >> >> ?s 09:16 de 20/05/2022, Neha gupta escreveu: >> > I am sorry.. The code is here and data is provided at the end of >> this >> > email. >> > >> > data = readARFF("aho.arff") >> > >> > index= sample(1:nrow(data), 0.7*nrow(data)) >> > train= data[index,] >> > test= data[-index,] >> > >> > task = TaskClassif$new("data", backend = train, target >> "isKilled") >> > learner= lrn("classif.randomForest", predict_type = "prob") >> > model= learner$train(task ) >> > >> > ///explainer is created to identify a bias in a particular >> feature i.e. CE >> > feature in this case >> > >> > explainer = explain_mlr3(model, >> > data = test[,-15], >> > y = as.numeric(test$isKilled)-1, >> > label="RF") >> > prot <- ifelse(test$CE == '2', 1, 0) /// Error comes here >> > privileged <- '1' >> > >> > >> > fc= fairness_check(explainer, >> > protected = prot, >> > privileged = privileged) >> > plot(fc) >> > >> > >> > ////////////////////////////////////////// my data is >> > >> > dput(test) >> > structure(list(DepthTree = c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, >> > 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, >> > 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, >> > 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, >> > 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, >> > 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, >> > 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, >> > 2, 2, 2, 1, 1, 1, 1, 2, 1), NumSubclass = c(0, 0, 0, 0, 0, 0, >> > 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, >> > 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, >> > 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, >> > 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, >> > 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, >> > 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, >> > 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2), McCabe = c(1, 1, 1, >> > 3, 3, 3, 3, 1, 2, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 1, 2, 2, 1, >> > 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, >> > 5, 5, 5, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 5, 5, 5, 5, 5, 5, >> > 5, 5, 5, 5, 5, 5, 2, 2, 2, 2, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, >> > 5, 5, 5, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 1, 1, >> > 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 4, 4, 1, 1, 2, 2, 2, 2, >> > 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1), LOC = c(3, >> > 3, 4, 10, 10, 10, 10, 4, 5, 22, 22, 22, 22, 22, 22, 22, 22, 3, >> > 3, 3, 3, 8, 8, 4, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, >> > 23, 23, 23, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 8, 8, 8, >> > 16, 16, 16, 16, 16, 16, 16, 16, 16, 20, 20, 20, 20, 20, 20, 20, >> > 20, 20, 20, 20, 20, 7, 7, 7, 7, 18, 18, 18, 18, 18, 18, 15, 15, >> > 15, 15, 15, 15, 15, 15, 6, 6, 6, 15, 15, 15, 15, 15, 15, 9, 9, >> > 9, 9, 9, 9, 9, 4, 4, 3, 3, 3, 3, 4, 4, 4, 5, 8, 8, 3, 3, 3, 7, >> > 7, 3, 3, 15, 15, 15, 15, 15, 15, 15, 15, 3, 3, 3, 4, 4, 4, 4, >> > 8, 8, 8, 8, 4, 3), DepthNested = c(1, 1, 1, 2, 2, 2, 2, 1, 2, >> > 4, 4, 4, 4, 4, 4, 4, 4, 1, 1, 1, 1, 2, 2, 1, 3, 3, 3, 3, 3, 3, >> > 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, >> > 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, >> > 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, >> > 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, >> > 1, 2, 2, 2, 1, 1, 1, 2, 2, 1, 1, 3, 3, 3, 3, 3, 3, 3, 3, 1, 1, >> > 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1), CA = c(1, 1, 1, 1, 1, 1, 1, >> > 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, >> > 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, >> > 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, >> > 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, >> > 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, >> > 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, >> > 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1), CE = c(2, 2, 2, 2, 2, >> > 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, >> > 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, >> > 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, >> > 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, >> > 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, >> > 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, >> > 0, 0, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 2, 2), Instability >> c(0.667, >> > 0.667, 0.667, 0.667, 0.667, 0.667, 0.667, 0.667, 0.667, 0.667, >> > 0.667, 0.667, 0.667, 0.667, 0.667, 0.667, 0.667, 0.667, 0.667, >> > 0.667, 0.667, 0.667, 0.667, 0.667, 0.667, 0.667, 0.667, 0.667, >> > 0.667, 0.667, 0.667, 0.667, 0.667, 0.667, 0.667, 0.667, 0.667, >> > 0.667, 0.667, 0.667, 0.667, 0.667, 0.667, 0.667, 0.667, 0.667, >> > 0.667, 0.667, 0.667, 0.667, 0.667, 0.667, 0.667, 0.667, 0.667, >> > 0.667, 0.667, 0.667, 0.667, 0.667, 0, 0, 0, 0, 0, 0, 0, 0, 0, >> > 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, >> > 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, >> > 0, 0, 0, 0, 0.667, 0.667, 0.667, 0.667, 0.667, 0.667, 0.667, >> > 0.667, 0.667, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.667, 0.667, 0.667, >> > 0.667, 0.667, 0.667, 0.667, 0, 0, 0, 0, 0.667, 0.667), numCovered >> = c(0, >> > 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, >> > 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, >> > 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 123, 54, 54, >> > 54, 123, 54, 54, 39, 84, 54, 54, 15, 138, 189, 189, 189, 27, >> > 51, 33, 6, 27, 27, 150, 150, 150, 54, 150, 54, 54, 150, 117, >> > 51, 66, 60, 15, 15, 72, 12, 45, 255, 255, 129, 129, 129, 0, 129, >> > 0, 0, 6, 6, 6, 303, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 12, >> > 12, 12, 18, 12, 12, 48, 12, 1557, 48, 12, 171, 0, 0, 0, 141, >> > 141, 45, 141, 18, 39), operator = structure(c(4L, 13L, 13L, 1L, >> > 4L, 9L, 12L, 4L, 11L, 4L, 7L, 8L, 8L, 8L, 8L, 8L, 9L, 7L, 8L, >> > 8L, 6L, 7L, 8L, 4L, 1L, 2L, 3L, 4L, 7L, 8L, 8L, 8L, 8L, 8L, 9L, >> > 11L, 12L, 12L, 4L, 6L, 7L, 7L, 7L, 8L, 8L, 8L, 8L, 8L, 6L, 9L, >> > 9L, 4L, 7L, 7L, 8L, 8L, 8L, 8L, 8L, 10L, 1L, 1L, 1L, 7L, 7L, >> > 8L, 8L, 8L, 8L, 8L, 13L, 13L, 7L, 8L, 8L, 9L, 8L, 8L, 8L, 8L, >> > 9L, 10L, 1L, 4L, 4L, 6L, 7L, 8L, 8L, 8L, 9L, 10L, 10L, 7L, 8L, >> > 8L, 10L, 11L, 11L, 7L, 8L, 4L, 8L, 9L, 10L, 10L, 4L, 10L, 7L, >> > 7L, 10L, 6L, 8L, 8L, 10L, 8L, 8L, 10L, 9L, 8L, 10L, 7L, 7L, 13L, >> > 2L, 2L, 2L, 8L, 8L, 8L, 8L, 8L, 11L, 10L, 10L, 13L, 13L, 8L, >> > 8L, 8L, 6L, 7L, 8L, 10L, 13L, 13L), .Label = c("T0", "T1", "T2", >> > "T3", "T4", "T5", "T6", "T7", "T8", "T9", "T10", "T11", "T12", >> > "T13", "T14", "T15"), class = "factor"), methodReturn >> structure(c(2L, >> > 2L, 2L, 2L, 2L, 2L, 2L, 4L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, >> > 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, >> > 4L, 4L, 4L, 4L, 4L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, >> > 2L, 2L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 2L, 2L, 2L, 2L, 2L, >> > 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 4L, 4L, 4L, 4L, 4L, >> > 4L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, >> > 4L, 4L, 1L, 1L, 3L, 3L, 3L, 3L, 3L, 1L, 1L, 3L, 3L, 3L, 1L, 4L, >> > 4L, 4L, 2L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 2L, 2L, 4L, 4L, 4L, 4L, >> > 4L, 4L, 4L, 4L, 3L, 3L, 2L, 2L, 4L, 4L, 4L, 1L, 1L, 1L, 1L, 2L, >> > 2L), .Label = c("I", "V", "Z", "method", "D", "[D", "[[D", "J", >> > "[I", "C", "[J", "[C", "[S", "F", "[F", "[B", "S", "B", "[Z", >> > "[[S", "[[B", "[[Z"), class = "factor"), numTestsCover = c(16, >> > 16, 16, 15, 15, 16, 15, 4, 16, 16, 15, 16, 15, 15, 15, 15, 15, >> > 3, 3, 3, 2, 16, 11, 4, 16, 3, 16, 16, 16, 16, 16, 4, 16, 16, >> > 16, 4, 16, 16, 3, 3, 3, 2, 4, 3, 2, 1, 4, 1, 15, 16, 15, 2, 3, >> > 2, 3, 3, 2, 2, 2, 3, 4, 5, 5, 5, 4, 5, 5, 4, 4, 5, 5, 4, 4, 4, >> > 4, 4, 4, 4, 4, 2, 4, 4, 4, 4, 4, 5, 4, 5, 5, 4, 4, 4, 4, 4, 4, >> > 4, 4, 3, 4, 4, 4, 6, 6, 6, 0, 6, 0, 0, 2, 2, 2, 7, 0, 0, 0, 15, >> > 16, 16, 16, 15, 17, 17, 17, 15, 5, 4, 4, 4, 3, 4, 4, 3, 4, 16, >> > 16, 4, 17, 0, 0, 0, 5, 5, 3, 5, 2, 3), mutantAssert = c(55, 55, >> > 55, 55, 55, 55, 55, 13, 55, 55, 55, 55, 55, 55, 55, 55, 55, 9, >> > 9, 9, 9, 55, 41, 13, 55, 5, 55, 55, 55, 55, 55, 13, 55, 55, 55, >> > 13, 55, 55, 13, 13, 13, 8, 13, 13, 8, 4, 13, 4, 55, 55, 55, 9, >> > 9, 9, 9, 9, 9, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, >> > 9, 9, 9, 9, 9, 9, 5, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, >> > 9, 9, 9, 6, 9, 9, 9, 14, 14, 14, 0, 14, 0, 0, 2, 2, 2, 15, 0, >> > 0, 0, 55, 58, 58, 55, 55, 58, 58, 58, 55, 9, 6, 6, 6, 6, 6, 6, >> > 6, 6, 55, 55, 13, 57, 0, 0, 0, 11, 11, 7, 11, 9, 9), classAssert >> = c(3, >> > 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, >> > 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, >> > 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, >> > 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, >> > 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 10, 10, 10, 10, >> > 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 3, 3, 3, 3, 3, 3, >> > 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 1, 1, 1, 1, 3, 3, >> > 3, 3, 0, 0), isKilled = structure(c(2L, 2L, 2L, 2L, 2L, 2L, 2L, >> > 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, >> > 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, >> > 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, >> > 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, >> > 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, >> > 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, >> > 1L, 2L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, >> > 2L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, >> > 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 1L), .Label = c("yes", >> > "no"), class = "factor")), row.names = c(3L, 4L, 5L, 7L, 9L, >> > 17L, 20L, 21L, 26L, 28L, 32L, 33L, 40L, 43L, 45L, 49L, 54L, 62L, >> > 64L, 65L, 70L, 75L, 77L, 81L, 84L, 86L, 88L, 89L, 93L, 95L, 97L, >> > 99L, 101L, 102L, 106L, 111L, 112L, 113L, 118L, 122L, 125L, 128L, >> > 129L, 134L, 141L, 142L, 143L, 146L, 156L, 168L, 169L, 174L, 178L, >> > 179L, 182L, 184L, 185L, 192L, 193L, 195L, 197L, 198L, 199L, 203L, >> > 205L, 209L, 211L, 215L, 216L, 218L, 220L, 224L, 227L, 228L, 230L, >> > 233L, 243L, 244L, 246L, 247L, 251L, 252L, 259L, 262L, 263L, 265L, >> > 270L, 273L, 274L, 275L, 284L, 285L, 286L, 291L, 296L, 297L, 300L, >> > 301L, 306L, 314L, 316L, 322L, 328L, 331L, 332L, 333L, 336L, 341L, >> > 346L, 347L, 348L, 360L, 363L, 366L, 367L, 383L, 392L, 395L, 398L, >> > 404L, 408L, 409L, 410L, 420L, 421L, 426L, 428L, 434L, 437L, 438L, >> > 440L, 441L, 447L, 449L, 450L, 452L, 454L, 457L, 458L, 459L, 463L, >> > 465L, 469L, 471L, 472L, 483L), class = "data.frame") >> > >> > On Fri, May 20, 2022 at 12:20 AM Jeff Newmiller >> <jdnewmil at dcn.davis.ca.us <mailto:jdnewmil at dcn.davis.ca.us>> >> > wrote: >> > >> >> Not reproducible. Posted HTML. >> >> >> >> On May 19, 2022 2:30:58 PM PDT, Neha gupta >> <neha.bologna90 at gmail.com <mailto:neha.bologna90 at gmail.com>> >> >> wrote: >> >>> Why do I get the following error when my variable in the 'if >> statement' >> >> has >> >>> no missing values. >> >>> >> >>> I check with is.na <is.na>(my variable) and it has no >> missing values >> >>> >> >>> Error in if (fraction <= 1) { : missing value where TRUE/FALSE >> needed >> >>> >> >>> Best regards >> >>> >> >>> [[alternative HTML version deleted]] >> >>> >> >>> ______________________________________________ >> >>> R-help at r-project.org <mailto:R-help at r-project.org> mailing list >> -- To UNSUBSCRIBE and more, see >> >>> stat.ethz.ch/mailman/listinfo/r-help >> <stat.ethz.ch/mailman/listinfo/r-help> >> >>> PLEASE do read the posting guide >> >> R-project.org/posting-guide.html >> <R-project.org/posting-guide.html> >> >>> and provide commented, minimal, self-contained, reproducible >> code. >> >> >> >> -- >> >> Sent from my phone. Please excuse my brevity. >> >> >> > >> > [[alternative HTML version deleted]] >> > >> > ______________________________________________ >> > R-help at r-project.org <mailto:R-help at r-project.org> mailing list >> -- To UNSUBSCRIBE and more, see >> > stat.ethz.ch/mailman/listinfo/r-help >> <stat.ethz.ch/mailman/listinfo/r-help> >> > PLEASE do read the posting guide >> R-project.org/posting-guide.html >> <R-project.org/posting-guide.html> >> > and provide commented, minimal, self-contained, reproducible code. >> >>[[alternative HTML version deleted]]
I am very sorry for not mentioning the libraries I used. Here I have mentioned now library(farff) library(mlr3learners) library(fairmodels) library(mlr3extralearners) library(mlr3) library(DALEX) library(DALEXtra) On Fri, May 20, 2022 at 3:47 PM Rui Barradas <ruipbarradas at sapo.pt> wrote:> Hello, > > I'm getting an error when running your code: > > learner = lrn("classif.randomForest", predict_type = "prob") > #> Error: Element with key 'classif.randomForest' not found in > DictionaryLearner! > > Rui Barradas > > ?s 14:12 de 20/05/2022, Neha gupta escreveu: > > When I run > > > > print(fc) > > > > it shows 'Inf'. It mean it doesn't calculate the bias/fairness, maybe > > due to missing values. > > > > RF passes 1/5 metrics > > Total loss : Inf > > > > > > > > On Fri, May 20, 2022 at 3:06 PM Rui Barradas <ruipbarradas at sapo.pt > > <mailto:ruipbarradas at sapo.pt>> wrote: > > > > Hello, > > > > This is a frequent way of coding and a source for questions. > > > > > > ifelse(test$CE == '2', 1, 0) > > > > > > is equivalent to the much more performant > > > > > > as.integer(test$CE == '2') # or as.numeric > > > > > > If the code still runs with errors, then those errors came from > > elsewhere. > > > > Hope this helps, > > > > Rui Barradas > > > > > > ?s 09:16 de 20/05/2022, Neha gupta escreveu: > > > I am sorry.. The code is here and data is provided at the end of > this > > > email. > > > > > > data = readARFF("aho.arff") > > > > > > index= sample(1:nrow(data), 0.7*nrow(data)) > > > train= data[index,] > > > test= data[-index,] > > > > > > task = TaskClassif$new("data", backend = train, target > "isKilled") > > > learner= lrn("classif.randomForest", predict_type = "prob") > > > model= learner$train(task ) > > > > > > ///explainer is created to identify a bias in a particular > > feature i.e. CE > > > feature in this case > > > > > > explainer = explain_mlr3(model, > > > data = test[,-15], > > > y = as.numeric(test$isKilled)-1, > > > label="RF") > > > prot <- ifelse(test$CE == '2', 1, 0) /// Error comes here > > > privileged <- '1' > > > > > > > > > fc= fairness_check(explainer, > > > protected = prot, > > > privileged = privileged) > > > plot(fc) > > > > > > > > > ////////////////////////////////////////// my data is > > > > > > dput(test) > > > structure(list(DepthTree = c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, > > > 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, > > > 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, > > > 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, > > > 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, > > > 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, > > > 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, > > > 2, 2, 2, 1, 1, 1, 1, 2, 1), NumSubclass = c(0, 0, 0, 0, 0, 0, > > > 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, > > > 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, > > > 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, > > > 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, > > > 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, > > > 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, > > > 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2), McCabe = c(1, 1, 1, > > > 3, 3, 3, 3, 1, 2, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 1, 2, 2, 1, > > > 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, > > > 5, 5, 5, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 5, 5, 5, 5, 5, 5, > > > 5, 5, 5, 5, 5, 5, 2, 2, 2, 2, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, > > > 5, 5, 5, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 1, 1, > > > 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 4, 4, 1, 1, 2, 2, 2, 2, > > > 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1), LOC = c(3, > > > 3, 4, 10, 10, 10, 10, 4, 5, 22, 22, 22, 22, 22, 22, 22, 22, 3, > > > 3, 3, 3, 8, 8, 4, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, > > > 23, 23, 23, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 8, 8, 8, > > > 16, 16, 16, 16, 16, 16, 16, 16, 16, 20, 20, 20, 20, 20, 20, 20, > > > 20, 20, 20, 20, 20, 7, 7, 7, 7, 18, 18, 18, 18, 18, 18, 15, 15, > > > 15, 15, 15, 15, 15, 15, 6, 6, 6, 15, 15, 15, 15, 15, 15, 9, 9, > > > 9, 9, 9, 9, 9, 4, 4, 3, 3, 3, 3, 4, 4, 4, 5, 8, 8, 3, 3, 3, 7, > > > 7, 3, 3, 15, 15, 15, 15, 15, 15, 15, 15, 3, 3, 3, 4, 4, 4, 4, > > > 8, 8, 8, 8, 4, 3), DepthNested = c(1, 1, 1, 2, 2, 2, 2, 1, 2, > > > 4, 4, 4, 4, 4, 4, 4, 4, 1, 1, 1, 1, 2, 2, 1, 3, 3, 3, 3, 3, 3, > > > 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, > > > 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, > > > 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, > > > 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, > > > 1, 2, 2, 2, 1, 1, 1, 2, 2, 1, 1, 3, 3, 3, 3, 3, 3, 3, 3, 1, 1, > > > 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1), CA = c(1, 1, 1, 1, 1, 1, 1, > > > 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, > > > 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, > > > 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, > > > 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, > > > 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, > > > 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, > > > 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1), CE = c(2, 2, 2, 2, 2, > > > 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, > > > 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, > > > 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, > > > 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, > > > 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, > > > 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, > > > 0, 0, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 2, 2), Instability > c(0.667, > > > 0.667, 0.667, 0.667, 0.667, 0.667, 0.667, 0.667, 0.667, 0.667, > > > 0.667, 0.667, 0.667, 0.667, 0.667, 0.667, 0.667, 0.667, 0.667, > > > 0.667, 0.667, 0.667, 0.667, 0.667, 0.667, 0.667, 0.667, 0.667, > > > 0.667, 0.667, 0.667, 0.667, 0.667, 0.667, 0.667, 0.667, 0.667, > > > 0.667, 0.667, 0.667, 0.667, 0.667, 0.667, 0.667, 0.667, 0.667, > > > 0.667, 0.667, 0.667, 0.667, 0.667, 0.667, 0.667, 0.667, 0.667, > > > 0.667, 0.667, 0.667, 0.667, 0.667, 0, 0, 0, 0, 0, 0, 0, 0, 0, > > > 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, > > > 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, > > > 0, 0, 0, 0, 0.667, 0.667, 0.667, 0.667, 0.667, 0.667, 0.667, > > > 0.667, 0.667, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.667, 0.667, 0.667, > > > 0.667, 0.667, 0.667, 0.667, 0, 0, 0, 0, 0.667, 0.667), numCovered > > = c(0, > > > 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, > > > 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, > > > 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 123, 54, 54, > > > 54, 123, 54, 54, 39, 84, 54, 54, 15, 138, 189, 189, 189, 27, > > > 51, 33, 6, 27, 27, 150, 150, 150, 54, 150, 54, 54, 150, 117, > > > 51, 66, 60, 15, 15, 72, 12, 45, 255, 255, 129, 129, 129, 0, 129, > > > 0, 0, 6, 6, 6, 303, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 12, > > > 12, 12, 18, 12, 12, 48, 12, 1557, 48, 12, 171, 0, 0, 0, 141, > > > 141, 45, 141, 18, 39), operator = structure(c(4L, 13L, 13L, 1L, > > > 4L, 9L, 12L, 4L, 11L, 4L, 7L, 8L, 8L, 8L, 8L, 8L, 9L, 7L, 8L, > > > 8L, 6L, 7L, 8L, 4L, 1L, 2L, 3L, 4L, 7L, 8L, 8L, 8L, 8L, 8L, 9L, > > > 11L, 12L, 12L, 4L, 6L, 7L, 7L, 7L, 8L, 8L, 8L, 8L, 8L, 6L, 9L, > > > 9L, 4L, 7L, 7L, 8L, 8L, 8L, 8L, 8L, 10L, 1L, 1L, 1L, 7L, 7L, > > > 8L, 8L, 8L, 8L, 8L, 13L, 13L, 7L, 8L, 8L, 9L, 8L, 8L, 8L, 8L, > > > 9L, 10L, 1L, 4L, 4L, 6L, 7L, 8L, 8L, 8L, 9L, 10L, 10L, 7L, 8L, > > > 8L, 10L, 11L, 11L, 7L, 8L, 4L, 8L, 9L, 10L, 10L, 4L, 10L, 7L, > > > 7L, 10L, 6L, 8L, 8L, 10L, 8L, 8L, 10L, 9L, 8L, 10L, 7L, 7L, 13L, > > > 2L, 2L, 2L, 8L, 8L, 8L, 8L, 8L, 11L, 10L, 10L, 13L, 13L, 8L, > > > 8L, 8L, 6L, 7L, 8L, 10L, 13L, 13L), .Label = c("T0", "T1", "T2", > > > "T3", "T4", "T5", "T6", "T7", "T8", "T9", "T10", "T11", "T12", > > > "T13", "T14", "T15"), class = "factor"), methodReturn > > structure(c(2L, > > > 2L, 2L, 2L, 2L, 2L, 2L, 4L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, > > > 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, > > > 4L, 4L, 4L, 4L, 4L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, > > > 2L, 2L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 2L, 2L, 2L, 2L, 2L, > > > 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 4L, 4L, 4L, 4L, 4L, > > > 4L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, > > > 4L, 4L, 1L, 1L, 3L, 3L, 3L, 3L, 3L, 1L, 1L, 3L, 3L, 3L, 1L, 4L, > > > 4L, 4L, 2L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 2L, 2L, 4L, 4L, 4L, 4L, > > > 4L, 4L, 4L, 4L, 3L, 3L, 2L, 2L, 4L, 4L, 4L, 1L, 1L, 1L, 1L, 2L, > > > 2L), .Label = c("I", "V", "Z", "method", "D", "[D", "[[D", "J", > > > "[I", "C", "[J", "[C", "[S", "F", "[F", "[B", "S", "B", "[Z", > > > "[[S", "[[B", "[[Z"), class = "factor"), numTestsCover = c(16, > > > 16, 16, 15, 15, 16, 15, 4, 16, 16, 15, 16, 15, 15, 15, 15, 15, > > > 3, 3, 3, 2, 16, 11, 4, 16, 3, 16, 16, 16, 16, 16, 4, 16, 16, > > > 16, 4, 16, 16, 3, 3, 3, 2, 4, 3, 2, 1, 4, 1, 15, 16, 15, 2, 3, > > > 2, 3, 3, 2, 2, 2, 3, 4, 5, 5, 5, 4, 5, 5, 4, 4, 5, 5, 4, 4, 4, > > > 4, 4, 4, 4, 4, 2, 4, 4, 4, 4, 4, 5, 4, 5, 5, 4, 4, 4, 4, 4, 4, > > > 4, 4, 3, 4, 4, 4, 6, 6, 6, 0, 6, 0, 0, 2, 2, 2, 7, 0, 0, 0, 15, > > > 16, 16, 16, 15, 17, 17, 17, 15, 5, 4, 4, 4, 3, 4, 4, 3, 4, 16, > > > 16, 4, 17, 0, 0, 0, 5, 5, 3, 5, 2, 3), mutantAssert = c(55, 55, > > > 55, 55, 55, 55, 55, 13, 55, 55, 55, 55, 55, 55, 55, 55, 55, 9, > > > 9, 9, 9, 55, 41, 13, 55, 5, 55, 55, 55, 55, 55, 13, 55, 55, 55, > > > 13, 55, 55, 13, 13, 13, 8, 13, 13, 8, 4, 13, 4, 55, 55, 55, 9, > > > 9, 9, 9, 9, 9, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, > > > 9, 9, 9, 9, 9, 9, 5, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, > > > 9, 9, 9, 6, 9, 9, 9, 14, 14, 14, 0, 14, 0, 0, 2, 2, 2, 15, 0, > > > 0, 0, 55, 58, 58, 55, 55, 58, 58, 58, 55, 9, 6, 6, 6, 6, 6, 6, > > > 6, 6, 55, 55, 13, 57, 0, 0, 0, 11, 11, 7, 11, 9, 9), classAssert > > = c(3, > > > 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, > > > 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, > > > 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, > > > 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, > > > 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 10, 10, 10, 10, > > > 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 3, 3, 3, 3, 3, 3, > > > 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 1, 1, 1, 1, 3, 3, > > > 3, 3, 0, 0), isKilled = structure(c(2L, 2L, 2L, 2L, 2L, 2L, 2L, > > > 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, > > > 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, > > > 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, > > > 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, > > > 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, > > > 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, > > > 1L, 2L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, > > > 2L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, > > > 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 1L), .Label = c("yes", > > > "no"), class = "factor")), row.names = c(3L, 4L, 5L, 7L, 9L, > > > 17L, 20L, 21L, 26L, 28L, 32L, 33L, 40L, 43L, 45L, 49L, 54L, 62L, > > > 64L, 65L, 70L, 75L, 77L, 81L, 84L, 86L, 88L, 89L, 93L, 95L, 97L, > > > 99L, 101L, 102L, 106L, 111L, 112L, 113L, 118L, 122L, 125L, 128L, > > > 129L, 134L, 141L, 142L, 143L, 146L, 156L, 168L, 169L, 174L, 178L, > > > 179L, 182L, 184L, 185L, 192L, 193L, 195L, 197L, 198L, 199L, 203L, > > > 205L, 209L, 211L, 215L, 216L, 218L, 220L, 224L, 227L, 228L, 230L, > > > 233L, 243L, 244L, 246L, 247L, 251L, 252L, 259L, 262L, 263L, 265L, > > > 270L, 273L, 274L, 275L, 284L, 285L, 286L, 291L, 296L, 297L, 300L, > > > 301L, 306L, 314L, 316L, 322L, 328L, 331L, 332L, 333L, 336L, 341L, > > > 346L, 347L, 348L, 360L, 363L, 366L, 367L, 383L, 392L, 395L, 398L, > > > 404L, 408L, 409L, 410L, 420L, 421L, 426L, 428L, 434L, 437L, 438L, > > > 440L, 441L, 447L, 449L, 450L, 452L, 454L, 457L, 458L, 459L, 463L, > > > 465L, 469L, 471L, 472L, 483L), class = "data.frame") > > > > > > On Fri, May 20, 2022 at 12:20 AM Jeff Newmiller > > <jdnewmil at dcn.davis.ca.us <mailto:jdnewmil at dcn.davis.ca.us>> > > > wrote: > > > > > >> Not reproducible. Posted HTML. > > >> > > >> On May 19, 2022 2:30:58 PM PDT, Neha gupta > > <neha.bologna90 at gmail.com <mailto:neha.bologna90 at gmail.com>> > > >> wrote: > > >>> Why do I get the following error when my variable in the 'if > > statement' > > >> has > > >>> no missing values. > > >>> > > >>> I check with is.na <is.na>(my variable) and it has no > > missing values > > >>> > > >>> Error in if (fraction <= 1) { : missing value where TRUE/FALSE > > needed > > >>> > > >>> Best regards > > >>> > > >>> [[alternative HTML version deleted]] > > >>> > > >>> ______________________________________________ > > >>> R-help at r-project.org <mailto:R-help at r-project.org> mailing list > > -- To UNSUBSCRIBE and more, see > > >>> stat.ethz.ch/mailman/listinfo/r-help > > <stat.ethz.ch/mailman/listinfo/r-help> > > >>> PLEASE do read the posting guide > > >> R-project.org/posting-guide.html > > <R-project.org/posting-guide.html> > > >>> and provide commented, minimal, self-contained, reproducible > code. > > >> > > >> -- > > >> Sent from my phone. Please excuse my brevity. > > >> > > > > > > [[alternative HTML version deleted]] > > > > > > ______________________________________________ > > > R-help at r-project.org <mailto:R-help at r-project.org> mailing list > > -- To UNSUBSCRIBE and more, see > > > stat.ethz.ch/mailman/listinfo/r-help > > <stat.ethz.ch/mailman/listinfo/r-help> > > > PLEASE do read the posting guide > > R-project.org/posting-guide.html > > <R-project.org/posting-guide.html> > > > and provide commented, minimal, self-contained, reproducible code. > > >[[alternative HTML version deleted]]