Also, normalizePath("power.pdf"). On Sun, May 9, 2021 at 5:13 PM Bert Gunter <bgunter.4567 at gmail.com> wrote:> ?getwd > > Bert Gunter > > "The trouble with having an open mind is that people keep coming along and > sticking things into it." > -- Opus (aka Berkeley Breathed in his "Bloom County" comic strip ) > > > On Sun, May 9, 2021 at 2:59 PM varin sacha via R-help < > r-help at r-project.org> > wrote: > > > Rui, > > > > The created pdf.file is off-screen device. Indeed after dev.off() I > should > > view the pdf file on my computer. But I don't find it. Where do I find > the > > pdf.file ? > > > > Regards, > > > > > > > > Le dimanche 9 mai 2021 ? 22:44:22 UTC+2, Rui Barradas < > > ruipbarradas at sapo.pt> a ?crit : > > > > > > > > > > > > Hello, > > > > You are not closing the pdf device. > > The only changes I have made to your code are right at the beginning of > > the plotting instructions and at the end of the code. > > > > > > ## The rest of the code is for plotting the image > > pdf(file = "power.pdf") > > op <- par(mfrow = c(4,2), cex = 0.45) > > > > [...] > > > > par(op) > > dev.off() > > ################# > > > > The comments only line is your last code line. > > The result is attached. > > > > Hope this helps, > > > > Rui Barradas > > > > ?s 19:39 de 09/05/21, varin sacha via R-help escreveu: > > > Dear R-experts, > > > > > > I am trying to get the 8 graphs like the ones in this paper : > > > https://statweb.stanford.edu/~tibs/reshef/comment.pdf > > > My R code does not show any error message neither warnings but I d'on't > > get what I would like to get (I mean the 8 graphs), so I am missing > > something. What's it ? Many thanks for your precious help. > > > > > > ################# > > > set.seed(1) > > > library(energy) > > > > > > # Here we define parameters which we use to simulate the data > > > # The number of null datasets we use to estimate our rejection reject > > #regions for an alternative with level 0.05 > > > nsim=50 > > > > > > # Number of alternative datasets we use to estimate our power > > > nsim2=50 > > > > > > # The number of different noise levels used > > > num.noise <- 30 > > > > > > # A constant to determine the amount of noise > > > noise <- 3 > > > > > > # Number of data points per simulation > > > n=100 > > > > > > # Vectors holding the null "correlations" (for pearson, for spearman, > > for kendall and dcor respectively) for each # of the nsim null datasets > at > > a #given noise level > > > val.cor=val.cors=val.cork=val.dcor=rep(NA,nsim) > > > > > > # Vectors holding the alternative "correlations" (for pearson, for > > #spearman, for kendall and dcor respectively) #for each of the nsim2 > > alternative datasets at a given noise level > > > val.cor2=val.cors2=val.cork2=val.dcor2= rep(NA,nsim2) > > > > > > > > > # Arrays holding the estimated power for each of the 4 "correlation" > > types, for each data type (linear, #parabolic, etc...) with each noise > level > > > power.cor=power.cors=power.cork=power.dcor= array(NA, c(8,num.noise)) > > > > > > ## We loop through the noise level and functional form; each time we > > #estimate a null distribution based on #the marginals of the data, and > then > > #use that null distribution to estimate power > > > ## We use a uniformly distributed x, because in the original paper the > > #authors used the same > > > > > > for(l in 1:num.noise) { > > > > > > for(typ in 1:8) { > > > > > > ## This next loop simulates data under the null with the correct > > marginals (x is uniform, and y is a function of a #uniform with gaussian > > noise) > > > > > > for(ii in 1:nsim) { > > > x=runif(n) > > > > > > #lin+noise > > > if(typ==1) { > > > y=x+ noise *(l/num.noise)* rnorm(n) > > > } > > > > > > #parabolic+noise > > > if(typ==2) { > > > y=4*(x-.5)^2+ noise * (l/num.noise) * rnorm(n) > > > } > > > > > > #cubic+noise > > > if(typ==3) { > > > y=128*(x-1/3)^3-48*(x-1/3)^3-12*(x-1/3)+10* noise * (l/num.noise) > > *rnorm(n) > > > } > > > > > > #sin+noise > > > if(typ==4) { > > > y=sin(4*pi*x) + 2*noise * (l/num.noise) *rnorm(n) > > > } > > > > > > #their sine + noise > > > if(typ==5) { > > > y=sin(16*pi*x) + noise * (l/num.noise) *rnorm(n) > > > } > > > > > > #x^(1/4) + noise > > > if(typ==6) { > > > y=x^(1/4) + noise * (l/num.noise) *rnorm(n) > > > } > > > > > > #circle > > > if(typ==7) { > > > y=(2*rbinom(n,1,0.5)-1) * (sqrt(1 - (2*x - 1)^2)) + noise/4*l/num.noise > > *rnorm(n) > > > } > > > > > > #step function > > > if(typ==8) { > > > y = (x > 0.5) + noise*5*l/num.noise *rnorm(n) > > > } > > > > > > # We resimulate x so that we have the null scenario > > > x <- runif(n) > > > > > > # Calculate the 4 correlations > > > val.cor[ii]=(cor(x,y)) > > > val.cors[ii]=(cor(x,y,method=c("spearman"))) > > > val.cork[ii]=(cor(x,y,method=c("kendal"))) > > > val.dcor[ii]=dcor(x,y) > > > } > > > > > > ## Next we calculate our 4 rejection cutoffs > > > cut.cor=quantile(val.cor,.95) > > > cut.cors=quantile(val.cors,.95) > > > cut.cork=quantile(val.cork,.95) > > > cut.dcor=quantile(val.dcor,.95) > > > > > > ## Next we simulate the data again, this time under the alternative > > > > > > for(ii in 1:nsim2) { > > > x=runif(n) > > > > > > #lin+noise > > > if(typ==1) { > > > y=x+ noise *(l/num.noise)* rnorm(n) > > > } > > > > > > #parabolic+noise > > > if(typ==2) { > > > y=4*(x-.5)^2+ noise * (l/num.noise) * rnorm(n) > > > } > > > > > > #cubic+noise > > > if(typ==3) { > > > y=128*(x-1/3)^3-48*(x-1/3)^3-12*(x-1/3)+10* noise * (l/num.noise) > > *rnorm(n) > > > } > > > > > > #sin+noise > > > if(typ==4) { > > > y=sin(4*pi*x) + 2*noise * (l/num.noise) *rnorm(n) > > > } > > > > > > #their sine + noise > > > if(typ==5) { > > > y=sin(16*pi*x) + noise * (l/num.noise) *rnorm(n) > > > } > > > > > > #x^(1/4) + noise > > > if(typ==6) { > > > y=x^(1/4) + noise * (l/num.noise) *rnorm(n) > > > } > > > > > > #circle > > > if(typ==7) { > > > y=(2*rbinom(n,1,0.5)-1) * (sqrt(1 - (2*x - 1)^2)) + noise/4*l/num.noise > > *rnorm(n) > > > } > > > > > > #step function > > > if(typ==8) { > > > y = (x > 0.5) + noise*5*l/num.noise *rnorm(n) > > > } > > > > > > ## We again calculate our 4 "correlations" > > > val.cor2[ii]=(cor(x,y)) > > > val.cors2[ii]=(cor(x,y,method=c("spearman"))) > > > val.cork2[ii]=(cor(x,y,method=c("kendal"))) > > > val.dcor2[ii]=dcor(x,y) > > > } > > > > > > ## Now we estimate the power as the number of alternative statistics > > #exceeding our estimated cutoffs > > > power.cor[typ,l] <- sum(val.cor2 > cut.cor)/nsim2 > > > power.cors[typ,l] <- sum(val.cors2 > cut.cor)/nsim2 > > > power.cork[typ,l] <- sum(val.cork2 > cut.cor)/nsim2 > > > power.dcor[typ,l] <- sum(val.dcor2 > cut.dcor)/nsim2 > > > } > > > } > > > > > > save.image() > > > > > > ## The rest of the code is for plotting the image > > > pdf("power.pdf") > > > par(mfrow = c(4,2), cex = 0.45) > > > plot((1:30)/10, power.cor[1,], ylim = c(0,1), main = "Linear", xlab > > "Noise Level", ylab = "Power", pch = 1, col = "black", type = 'b') > > > points((1:30)/10, power.cors[1,], pch = 2, col = "green", type = 'b') > > > points((1:30)/10, power.cork[1,], pch = 3, col = "blue", type = 'b') > > > points((1:30)/10, power.dcor[1,], pch = 4, col = "red", type = 'b') > > > legend("topright",c("cor pearson","cor spearman", "cor kendal","dcor"), > > pch = c(1,2,3), col = c("black","green","blue","red")) > > > > > > plot((1:30)/10, power.cor[2,], ylim = c(0,1), main = "Quadratic", xlab > > > "Noise Level", ylab = "Power", pch = 1, col = "black", type = 'b') > > > points((1:30)/10, power.cors[2,], pch = 2, col = "green", type = 'b') > > > points((1:30)/10, power.cork[2,], pch = 3, col = "blue", type = 'b') > > > points((1:30)/10, power.dcor[2,], pch = 4, col = "red", type = 'b') > > > legend("topright",c("cor pearson","cor spearman", "cor kendal","dcor"), > > pch = c(1,2,3), col = c("black","green","blue","red")) > > > > > > plot((1:30)/10, power.cor[3,], ylim = c(0,1), main = "Cubic", xlab > > "Noise Level", ylab = "Power", pch = 1, col = "black", type = 'b') > > > points((1:30)/10, power.cors[3,], pch = 2, col = "green", type = 'b') > > > points((1:30)/10, power.cork[3,], pch = 3, col = "blue", type = 'b') > > > points((1:30)/10, power.dcor[3,], pch = 4, col = "red", type = 'b') > > > legend("topright",c("cor pearson","cor spearman", "cor kendal","dcor"), > > pch = c(1,2,3), col = c("black","green","blue","red")) > > > > > > plot((1:30)/10, power.cor[5,], ylim = c(0,1), main = "Sine: period > 1/8", > > xlab = "Noise Level", ylab = "Power", pch = 1, col = "black", type = 'b') > > > points((1:30)/10, power.cors[5,], pch = 2, col = "green", type = 'b') > > > points((1:30)/10, power.cork[5,], pch = 3, col = "blue", type = 'b') > > > points((1:30)/10, power.dcor[5,], pch = 4, col = "red", type = 'b') > > > legend("topright",c("cor pearson","cor spearman", "cor kendal","dcor"), > > pch = c(1,2,3), col = c("black","green","blue","red")) > > > > > > plot((1:30)/10, power.cor[4,], ylim = c(0,1), main = "Sine: period > 1/2", > > xlab = "Noise Level", ylab = "Power", pch = 1, col = "black", type = 'b') > > > points((1:30)/10, power.cors[4,], pch = 2, col = "green", type = 'b') > > > points((1:30)/10, power.cork[4,], pch = 3, col = "blue", type = 'b') > > > points((1:30)/10, power.dcor[4,], pch = 4, col = "red", type = 'b') > > > legend("topright",c("cor pearson","cor spearman", "cor kendal","dcor"), > > pch = c(1,2,3), col = c("black","green","blue","red")) > > > > > > plot((1:30)/10, power.cor[6,], ylim = c(0,1), main = "X^(1/4)", xlab > > "Noise Level", ylab = "Power", pch = 1, col = "black", type = 'b') > > > points((1:30)/10, power.cors[6,], pch = 2, col = "green", type = 'b') > > > points((1:30)/10, power.cork[6,], pch = 3, col = "blue", type = 'b') > > > points((1:30)/10, power.dcor[6,], pch = 4, col = "red", type = 'b') > > > legend("topright",c("cor pearson","cor spearman", "cor kendal","dcor"), > > pch = c(1,2,3), col = c("black","green","blue","red")) > > > > > > plot((1:30)/10, power.cor[7,], ylim = c(0,1), main = "Circle", xlab > > "Noise Level", ylab = "Power", pch = 1, col = "black", type = 'b') > > > points((1:30)/10, power.cors[7,], pch = 2, col = "green", type = 'b') > > > points((1:30)/10, power.cork[7,], pch = 3, col = "blue", type = 'b') > > > points((1:30)/10, power.dcor[7,], pch = 4, col = "red", type = 'b') > > > legend("topright",c("cor pearson","cor spearman", "cor kendal","dcor"), > > pch = c(1,2,3), col = c("black","green","blue","red")) > > > > > > plot((1:30)/10, power.cor[8,], ylim = c(0,1), main = "Step function", > > xlab = "Noise Level", ylab = "Power", pch = 1, col = "black", type = 'b') > > > points((1:30)/10, power.cors[8,], pch = 2, col = "green", type = 'b') > > > points((1:30)/10, power.cork[8,], pch = 3, col = "blue", type = 'b') > > > points((1:30)/10, power.dcor[8,], pch = 4, col = "red", type = 'b') > > > legend("topright",c("cor pearson","cor spearman", "cor kendal","dcor"), > > pch = c(1,2,3), col = c("black","green","blue","red")) > > > > > > ################# > > > > > > ______________________________________________ > > > R-help at r-project.org mailing list -- To UNSUBSCRIBE and more, see > > > https://stat.ethz.ch/mailman/listinfo/r-help > > > PLEASE do read the posting guide > > http://www.R-project.org/posting-guide.html > > > and provide commented, minimal, self-contained, reproducible code. > > > > > > > ______________________________________________ > > R-help at r-project.org mailing list -- To UNSUBSCRIBE and more, see > > https://stat.ethz.ch/mailman/listinfo/r-help > > PLEASE do read the posting guide > > http://www.R-project.org/posting-guide.html > > and provide commented, minimal, self-contained, reproducible code. > > > > [[alternative HTML version deleted]] > > ______________________________________________ > R-help at r-project.org mailing list -- To UNSUBSCRIBE and more, see > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide > http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code. >[[alternative HTML version deleted]]
Dear all, Many thanks for your responses. Best S. Le lundi 10 mai 2021 ? 17:18:59 UTC+2, Bill Dunlap <williamwdunlap at gmail.com> a ?crit : Also, normalizePath("power.pdf"). On Sun, May 9, 2021 at 5:13 PM Bert Gunter <bgunter.4567 at gmail.com> wrote:> ?getwd > > Bert Gunter > > "The trouble with having an open mind is that people keep coming along and > sticking things into it." > -- Opus (aka Berkeley Breathed in his "Bloom County" comic strip ) > > > On Sun, May 9, 2021 at 2:59 PM varin sacha via R-help <r-help at r-project.org> > wrote: > >> Rui, >> >> The created pdf.file is off-screen device. Indeed after dev.off() I should >> view the pdf file on my computer. But I don't find it. Where do I find the >> pdf.file ? >> >> Regards, >> >> >> >> Le dimanche 9 mai 2021 ? 22:44:22 UTC+2, Rui Barradas < >> ruipbarradas at sapo.pt> a ?crit : >> >> >> >> >> >> Hello, >> >> You are not closing the pdf device. >> The only changes I have made to your code are right at the beginning of >> the plotting instructions and at the end of the code. >> >> >> ## The rest of the code is for plotting the image >> pdf(file = "power.pdf") >> op <- par(mfrow = c(4,2), cex = 0.45) >> >> [...] >> >> par(op) >> dev.off() >> ################# >> >> The comments only line is your last code line. >> The result is attached. >> >> Hope this helps, >> >> Rui Barradas >> >> ?s 19:39 de 09/05/21, varin sacha via R-help escreveu: >> > Dear R-experts, >> > >> > I am trying to get the 8 graphs like the ones in this paper : >> > https://statweb.stanford.edu/~tibs/reshef/comment.pdf >> > My R code does not show any error message neither warnings but I d'on't >> get what I would like to get (I mean the 8 graphs), so I am missing >> something. What's it ? Many thanks for your precious help. >> > >> > ################# >> > set.seed(1) >> > library(energy) >> > >> > # Here we define parameters which we use to simulate the data >> > # The number of null datasets we use to estimate our rejection reject >> #regions for an alternative with level 0.05 >> > nsim=50 >> > >> > # Number of alternative datasets we use to estimate our power >> > nsim2=50 >> > >> > # The number of different noise levels used >> > num.noise <- 30 >> > >> > # A constant to determine the amount of noise >> > noise <- 3 >> > >> > # Number of data points per simulation >> > n=100 >> > >> > # Vectors holding the null "correlations" (for pearson, for spearman, >> for kendall and dcor respectively) for each # of the nsim null datasets at >> a #given noise level >> > val.cor=val.cors=val.cork=val.dcor=rep(NA,nsim) >> > >> > # Vectors holding the alternative "correlations" (for pearson, for >> #spearman, for kendall and dcor respectively) #for each of the nsim2 >> alternative datasets at a given noise level >> > val.cor2=val.cors2=val.cork2=val.dcor2= rep(NA,nsim2) >> > >> > >> > # Arrays holding the estimated power for each of the 4 "correlation" >> types, for each data type (linear, #parabolic, etc...) with each noise level >> > power.cor=power.cors=power.cork=power.dcor= array(NA, c(8,num.noise)) >> > >> > ## We loop through the noise level and functional form; each time we >> #estimate a null distribution based on #the marginals of the data, and then >> #use that null distribution to estimate power >> > ## We use a uniformly distributed x, because in the original paper the >> #authors used the same >> > >> > for(l in 1:num.noise) { >> > >> >? ? ? ? for(typ in 1:8) { >> > >> > ## This next loop simulates data under the null with the correct >> marginals (x is uniform, and y is a function of a #uniform with gaussian >> noise) >> > >> >? ? ? for(ii in 1:nsim) { >> >? ? ? ? x=runif(n) >> > >> > #lin+noise >> > if(typ==1) { >> > y=x+ noise *(l/num.noise)* rnorm(n) >> > } >> > >> > #parabolic+noise >> > if(typ==2) { >> > y=4*(x-.5)^2+? noise * (l/num.noise) * rnorm(n) >> > } >> > >> > #cubic+noise >> > if(typ==3) { >> > y=128*(x-1/3)^3-48*(x-1/3)^3-12*(x-1/3)+10* noise? * (l/num.noise) >> *rnorm(n) >> > } >> > >> > #sin+noise >> > if(typ==4) { >> > y=sin(4*pi*x) + 2*noise * (l/num.noise) *rnorm(n) >> > } >> > >> > #their sine + noise >> > if(typ==5) { >> > y=sin(16*pi*x) + noise * (l/num.noise) *rnorm(n) >> > } >> > >> > #x^(1/4) + noise >> > if(typ==6) { >> > y=x^(1/4) + noise * (l/num.noise) *rnorm(n) >> > } >> > >> > #circle >> > if(typ==7) { >> > y=(2*rbinom(n,1,0.5)-1) * (sqrt(1 - (2*x - 1)^2)) + noise/4*l/num.noise >> *rnorm(n) >> > } >> > >> > #step function >> > if(typ==8) { >> > y = (x > 0.5) + noise*5*l/num.noise *rnorm(n) >> > } >> > >> > # We resimulate x so that we have the null scenario >> > x <- runif(n) >> > >> > # Calculate the 4 correlations >> > val.cor[ii]=(cor(x,y)) >> > val.cors[ii]=(cor(x,y,method=c("spearman"))) >> > val.cork[ii]=(cor(x,y,method=c("kendal"))) >> > val.dcor[ii]=dcor(x,y) >> > } >> > >> > ## Next we calculate our 4 rejection cutoffs >> > cut.cor=quantile(val.cor,.95) >> > cut.cors=quantile(val.cors,.95) >> > cut.cork=quantile(val.cork,.95) >> > cut.dcor=quantile(val.dcor,.95) >> > >> > ## Next we simulate the data again, this time under the alternative >> > >> >? ? ? for(ii in 1:nsim2) { >> >? ? ? ? x=runif(n) >> > >> > #lin+noise >> > if(typ==1) { >> > y=x+ noise *(l/num.noise)* rnorm(n) >> > } >> > >> > #parabolic+noise >> > if(typ==2) { >> > y=4*(x-.5)^2+? noise * (l/num.noise) * rnorm(n) >> > } >> > >> > #cubic+noise >> > if(typ==3) { >> > y=128*(x-1/3)^3-48*(x-1/3)^3-12*(x-1/3)+10* noise? * (l/num.noise) >> *rnorm(n) >> > } >> > >> > #sin+noise >> > if(typ==4) { >> > y=sin(4*pi*x) + 2*noise * (l/num.noise) *rnorm(n) >> > } >> > >> > #their sine + noise >> > if(typ==5) { >> > y=sin(16*pi*x) + noise * (l/num.noise) *rnorm(n) >> > } >> > >> > #x^(1/4) + noise >> > if(typ==6) { >> > y=x^(1/4) + noise * (l/num.noise) *rnorm(n) >> > } >> > >> > #circle >> > if(typ==7) { >> > y=(2*rbinom(n,1,0.5)-1) * (sqrt(1 - (2*x - 1)^2)) + noise/4*l/num.noise >> *rnorm(n) >> > } >> > >> > #step function >> > if(typ==8) { >> > y = (x > 0.5) + noise*5*l/num.noise *rnorm(n) >> > } >> > >> > ## We again calculate our 4 "correlations" >> > val.cor2[ii]=(cor(x,y)) >> > val.cors2[ii]=(cor(x,y,method=c("spearman"))) >> > val.cork2[ii]=(cor(x,y,method=c("kendal"))) >> > val.dcor2[ii]=dcor(x,y) >> > } >> > >> > ## Now we estimate the power as the number of alternative statistics >> #exceeding our estimated cutoffs >> > power.cor[typ,l] <- sum(val.cor2 > cut.cor)/nsim2 >> > power.cors[typ,l] <- sum(val.cors2 > cut.cor)/nsim2 >> > power.cork[typ,l] <- sum(val.cork2 > cut.cor)/nsim2 >> > power.dcor[typ,l] <- sum(val.dcor2 > cut.dcor)/nsim2 >> > } >> > } >> > >> > save.image() >> > >> > ## The rest of the code is for plotting the image >> > pdf("power.pdf") >> > par(mfrow = c(4,2), cex = 0.45) >> > plot((1:30)/10, power.cor[1,], ylim = c(0,1), main = "Linear", xlab >> "Noise Level", ylab = "Power", pch = 1, col = "black", type = 'b') >> > points((1:30)/10, power.cors[1,], pch = 2, col = "green", type = 'b') >> > points((1:30)/10, power.cork[1,], pch = 3, col = "blue", type = 'b') >> > points((1:30)/10, power.dcor[1,], pch = 4, col = "red", type = 'b') >> > legend("topright",c("cor pearson","cor spearman", "cor kendal","dcor"), >> pch = c(1,2,3), col = c("black","green","blue","red")) >> > >> > plot((1:30)/10, power.cor[2,], ylim = c(0,1), main = "Quadratic", xlab >> "Noise Level", ylab = "Power", pch = 1, col = "black", type = 'b') >> > points((1:30)/10, power.cors[2,], pch = 2, col = "green", type = 'b') >> > points((1:30)/10, power.cork[2,], pch = 3, col = "blue", type = 'b') >> > points((1:30)/10, power.dcor[2,], pch = 4, col = "red", type = 'b') >> > legend("topright",c("cor pearson","cor spearman", "cor kendal","dcor"), >> pch = c(1,2,3), col = c("black","green","blue","red")) >> > >> > plot((1:30)/10, power.cor[3,], ylim = c(0,1), main = "Cubic", xlab >> "Noise Level", ylab = "Power", pch = 1, col = "black", type = 'b') >> > points((1:30)/10, power.cors[3,], pch = 2, col = "green", type = 'b') >> > points((1:30)/10, power.cork[3,], pch = 3, col = "blue", type = 'b') >> > points((1:30)/10, power.dcor[3,], pch = 4, col = "red", type = 'b') >> > legend("topright",c("cor pearson","cor spearman", "cor kendal","dcor"), >> pch = c(1,2,3), col = c("black","green","blue","red")) >> > >> > plot((1:30)/10, power.cor[5,], ylim = c(0,1), main = "Sine: period 1/8", >> xlab = "Noise Level", ylab = "Power", pch = 1, col = "black", type = 'b') >> > points((1:30)/10, power.cors[5,], pch = 2, col = "green", type = 'b') >> > points((1:30)/10, power.cork[5,], pch = 3, col = "blue", type = 'b') >> > points((1:30)/10, power.dcor[5,], pch = 4, col = "red", type = 'b') >> > legend("topright",c("cor pearson","cor spearman", "cor kendal","dcor"), >> pch = c(1,2,3), col = c("black","green","blue","red")) >> > >> > plot((1:30)/10, power.cor[4,], ylim = c(0,1), main = "Sine: period 1/2", >> xlab = "Noise Level", ylab = "Power", pch = 1, col = "black", type = 'b') >> > points((1:30)/10, power.cors[4,], pch = 2, col = "green", type = 'b') >> > points((1:30)/10, power.cork[4,], pch = 3, col = "blue", type = 'b') >> > points((1:30)/10, power.dcor[4,], pch = 4, col = "red", type = 'b') >> > legend("topright",c("cor pearson","cor spearman", "cor kendal","dcor"), >> pch = c(1,2,3), col = c("black","green","blue","red")) >> > >> > plot((1:30)/10, power.cor[6,], ylim = c(0,1), main = "X^(1/4)", xlab >> "Noise Level", ylab = "Power", pch = 1, col = "black", type = 'b') >> > points((1:30)/10, power.cors[6,], pch = 2, col = "green", type = 'b') >> > points((1:30)/10, power.cork[6,], pch = 3, col = "blue", type = 'b') >> > points((1:30)/10, power.dcor[6,], pch = 4, col = "red", type = 'b') >> > legend("topright",c("cor pearson","cor spearman", "cor kendal","dcor"), >> pch = c(1,2,3), col = c("black","green","blue","red")) >> > >> > plot((1:30)/10, power.cor[7,], ylim = c(0,1), main = "Circle", xlab >> "Noise Level", ylab = "Power", pch = 1, col = "black", type = 'b') >> > points((1:30)/10, power.cors[7,], pch = 2, col = "green", type = 'b') >> > points((1:30)/10, power.cork[7,], pch = 3, col = "blue", type = 'b') >> > points((1:30)/10, power.dcor[7,], pch = 4, col = "red", type = 'b') >> > legend("topright",c("cor pearson","cor spearman", "cor kendal","dcor"), >> pch = c(1,2,3), col = c("black","green","blue","red")) >> > >> > plot((1:30)/10, power.cor[8,], ylim = c(0,1), main = "Step function", >> xlab = "Noise Level", ylab = "Power", pch = 1, col = "black", type = 'b') >> > points((1:30)/10, power.cors[8,], pch = 2, col = "green", type = 'b') >> > points((1:30)/10, power.cork[8,], pch = 3, col = "blue", type = 'b') >> > points((1:30)/10, power.dcor[8,], pch = 4, col = "red", type = 'b') >> > legend("topright",c("cor pearson","cor spearman", "cor kendal","dcor"), >> pch = c(1,2,3), col = c("black","green","blue","red")) >> > >> > ################# >> > >> > ______________________________________________ >> > R-help at r-project.org mailing list -- To UNSUBSCRIBE and more, see >> > https://stat.ethz.ch/mailman/listinfo/r-help >> > PLEASE do read the posting guide >> http://www.R-project.org/posting-guide.html >> > and provide commented, minimal, self-contained, reproducible code. >> > >> >> ______________________________________________ >> R-help at r-project.org mailing list -- To UNSUBSCRIBE and more, see >> https://stat.ethz.ch/mailman/listinfo/r-help >> PLEASE do read the posting guide >> http://www.R-project.org/posting-guide.html >> and provide commented, minimal, self-contained, reproducible code. >> > > ? ? ? ? [[alternative HTML version deleted]] > > > ______________________________________________ > R-help at r-project.org mailing list -- To UNSUBSCRIBE and more, see > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code. >