Basically I want to redo the methodology of the paper: https://www.nature.com/articles/s41598-018-23492-2 I choose microarray data GSE75693 of 30 patients with stable kidney transplantation and 15 with BKVN to identify differentially expressed genes (DEGs). I performed this in GEO2R and find R script there and Runs R script Successfully on R studio as well. The R script is : Differential expression analysis with limma library(Biobase) library(GEOquery) library(limma) load series and platform data from GEO gset <- getGEO("GSE75693", GSEMatrix =TRUE, AnnotGPL=TRUE) if (length(gset)> 1) idx <- grep("GPL570", attr(gset, "names")) else idx <- 1 gset <-gset[[idx]] make proper column names to match toptable fvarLabels(gset) <- make.names(fvarLabels(gset)) group names for all samples gsms <- paste0("000000000000000000000000000000XXXXXXXXXXXXXXX11111", "1111111111XXXXXXXXXXXXXXXXXXX") sml <- c() for (i in 1:nchar(gsms)) { sml[i] <- substr(gsms,i,i) } eliminate samples marked as "X" sel <- which(sml != "X") sml <- sml[sel] gset <- gset[ ,sel] log2 transform exprs(gset) <- log2(exprs(gset)) set up the data and proceed with analysis sml <- paste("G", sml, sep="") # set group names fl <- as.factor(sml) gset$description <- fl design <- model.matrix(~ description + 0, gset) colnames(design) <- levels(fl) fit <- lmFit(gset, design) cont.matrix <- makeContrasts(G1-G0, levels=design) fit2 <- contrasts.fit(fit, cont.matrix) fit2 <- eBayes(fit2, 0.01) tT <- topTable(fit2, adjust="fdr", sort.by="B", number=1250) tT <- subset(tT, select=c("ID","adj.P.Val","P.Value","t","B","logFC","Gene.symbol","Gene.title")) DEGs = subset(tT, P.Value < 0.01 & logFC >2) *Problem :* But the problem is that I can't find any DEGs based on the threshold P < 0.01 and fold change >2.0 plz help me [[alternative HTML version deleted]]